

Forum on Tracking Detector Mechanics 2016 Bonn, 25 May 2016

Istituto Nazionale di Fisica Nucleare Sezione di Milano

LHCb UT Upgrade: studies and test for the detector cooling system design

Simone Coelli (I.N.F.N. MILANO) For the LHCb UT Group

CONTENTS

- LHCb UT TRACKER UPGRADE
- THERMAL REQUIREMENTS
- THERMAL SIMULATIONS
- DETECTOR COOLING SYSTEM
- CO₂ COOLING TEST

UPSTREAM TRACKER FOR THE LHCb UPGRADE

1719 mm UTbX UTbV UTaU UTaU UTaX UTaX UTaX UTaX UTaX

UT detector

is the replacement for the present Trigger Tracker (TT)

- Signals processed at the sensor level
- Low sensor temperature

Geometry

- 4 planar detection layers
- width 1.5 m * heigth 1.3 m

THIS PRESENTATION WILL FOCUS ON THE DETECTOR THERMAL MANAGEMENT

THERMAL REQUIREMENTS

The detector cooling system has to:

- Extract the thermal power dissipated by read-out chips
- Keep the sensor temperature < 5 °C
 To prevent thermal runaway in presence of radiation damage
- Keep the temperature difference over the silicon sensors < 5 °C
- Keep the ASICs max temperature < 40 °C</p>

Detector total power:

4192 ASICs ~ 0,8 W/each
+ cables + sensors + environment etc.
=> ~ 4 kW to be extracted + 25 % safety

Implementing:

- CO₂ evaporative cooling system
- **CO₂ evaporation temperature 25 °C**
- local support design and material properties
- automatically satisfied with the adopted design and cooling temperature

CO₂ Cooling plant:

- 2-Phase Accumulator Controlled Loop
- Common development with LHCb VELO detector

STAVE DESIGN

ASICs read-out chips:

main contribution to the thermal dissipated power

Design concept exploits:

CO₂ evaporating inside a pipe passing underneath the ASICs

COOLING PIPE: Titanium C.P. 2 I.D. 2 mm O.D. 2,275 mm

please refer to the Ray Mountain talk at this Forum "Mechanics and Construction of the LHCb Upstream Tracker Detector"

		Nu	ım	be	r c	of A	۱S	ICs	s p	ber	S	en	so	r		
									•							
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	8	8	8	8	4	4	4	4	4	4	
4	4	4	4	4	4	8	8	8	8	4	4	4	4	4	4	
4	4	4	4	4	4	8	88	8	8	4	4	4	4	4	4	
4	4	4	4	4	4	8	8	8	8	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	

4 ASICs read-out

Sensor mounted on both sides of the stave

Attached over the power/data bus fcable (in brown)

8 ASICs read-out

CALCULATED THERMAL FIELD

A1.T3 Temperature gradient

for the more critical sensor A1.T3:

Referring to the cooling pipe temperature Min $\Delta T \sim 1 \ ^{\circ}C$ Max $\Delta T \sim 6 \ ^{\circ}C$

=> TEMPERATURE ESCURSION OVER THE SILICON SENSOR = $\Delta T \sim 5 \circ C$

CURRENT LOCAL SUPPORT DESIGN SATISFIES THIS REQUIREMENT OPTIMIZATION WORK IN PROGRESS

DETECTOR COOLING

UT Detector can be split into two halves.

We can identify 4+4 "half-plane" units - having 8 or 9 parallel staves

STAVE ENERGY BALANCE

Inlet: CO₂ liquid near to saturation

Outlet: Vapour fraction X_{OUT} 30 % design point 50 % max

MASS FLOW-RATE CALCULATION: $\Gamma CO_2 = POWER / X_{OUT} * DH_{LIQ-VAP}$

<u>CENTRAL "C" STAVE</u> X OUT = 30 % => Γ = 75 W / 0,3*280 J/g = ~ 0.9 g/s

LATERAL "A" STAVE X OUT = 30 % => Γ = 50 W / 0,3*280 J/g= ~ 0.6 g/s

DH_{LIQ-VAP} = enthalpy difference liquid to vapour ~280 kJ/kg At evaporation temperature of - 25 °C

POWER DISTRIBUTION

ASICs distribution on a "half-plane"

Differencies beetwen the evaporators

pipe in the central stave:

- 6% longer
- 4 more 90° bends

thermal load:

- Lateral stave 50 W
- central stave 75 W (50% more)

CO₂ DISTRIBUTION LINES AND MANIFOLDING

STAVE INLET CO₂ SUPPLY LINES

For stability in evaporating parallel channels INLET connection lines MUST HAVE A PRESSURE DROP bigger than the evaporation channels pressure drop (e.g. > 5 times)

To be obtained using **passive elements.** Two options investigated:

1. calibrated orifices: concentrated pressure drops, inserted in the stave inlet line

2. capillaries: distributed pressure drops,Coiled between stave and manifold, or running outside the detector box to external manifold

BOTH OPTIONS HAVE BEEN TESTED

2. DISTRIBUTION IMPLEMENTING CALIBRATED ORIFICES

compact design: flow restrictor incorporated in the inlet connection line

SWAGELOK flow restrictors

Flow Restrictors

This product can be used in liquid or gas delivery systems where repeatable flow reduction or limiting is required.

- One piece, compact design saves space
- Standard orifice sizes drilled through a 1/4 in. male VCR union
- No dead volume for clean operation
- Identification of orifice and heat code marked clearly on the body
- Electropolished, cleaned, and packaged in accordance with Swagelok Ultrahigh-Purity Process Specification (SC-01), MS-06-61
- Working pressure 10 000 psig (689 bar)

Ordering Information and Dimensions

VCH components with fixed threads mu	ist remain
stationary during normal installation. Th	nese fitting
connections should be assembled only	to glands
with rotating female nuts.	

	Ex in (mm)	Ordering Number
	0.010 (0.254)	6LV-4-VCR-6-DM-010P
	0.012 (0.305)	6LV-4-VCR-6-DM-012P
	0.015 (0.381)	6LV-4-VCR-6-DM-015P
٦	0.017 (0.432)	6LV-4-VCR-6-DM-017P
	0.020 (0.508)	6LV-4-VCR-6-DM-020P
	0.023 (0.584)	6LV-4-VCR-6-DM-023P
	0.025 (0.635)	6LV-4-VCR-6-DM-025P
	0.026 (0.660)	6LV-4-VCR-6-DM-026P
	0.027 (0.686)	6LV-4-VCR-6-DM-027P
	0.030 (0.762)	6LV-4-VCR-6-DM-030P
	0.035 (0.889)	6LV-4-VCR-6-DM-035P
	0.040 (1.016)	6LV-4-VCR-6-DM-040P
	0.045 (1.143)	6LV-4-VCR-6-DM-045P

Ex, in. (mm)	Ordering Number
0.050 (1.270)	6LV-4-VCR-6-DM-050P
0.055 (1.397)	6LV-4-VCR-6-DM-055P
0.060 (1.529)	6LV-4-VCR-6-DM-060P
0.065 (1.651)	6LV-4-VCR-6-DM-065P
0.070 (1.778)	6LV-4-VCR-6-DM-070P
0.075 (1.905)	6LV-4-VCR-6-DM-075P
0.080 (2.032)	6LV-4-VCR-6-DM-080P
0.085 (2.159)	6LV-4-VCR-6-DM-085P
0.090 (2.286)	6LV-4-VCR-6-DM-090P
0.093 (2.362)	6LV-4-VCR-6-DM-093P
0.095 (2.413)	6LV-4-VCR-6-DM-095P
0.100 (2.540)	6LV-4-VCR-6-DM-100P

STAVE OUTLET CO₂ EXHAUST LINES

For stability in evaporating parallel channels
OUTLET connection lines MUST HAVE MINIMUM PRESSURE DROP

- AISI 316L PIPE
- ID 2.0 mm = the same as Titanium cooling pipe NO RESTRICTION
- OD 2.5 mm = minimum available thickness (P_{design} = 100 bar)

To increase the elasticity of the connections => COILING

VCR FITTINGS LASER WELDED ON PIPE (RODOFILL-SAES GETTER Company)

CO₂ COOLING TEST

CO₂ BOILING IN

- VERTICAL
- «SNAKE» PIPE
- 2 mm I.D.

THERMO-HYDRAULIC CHARACTERIZATION OF

- STAVE
- DETECTOR COMPONENTS PROPOSED FOR THE DESIGN

CO₂ MEASUREMENT POINTS

Fluid pressure trasmitters Piezo-resistive Keller 21Y Output 4-20 mA; 0-80 bar_A

Fluid temperature trasmitters PT100-4wires Rodax OD 4mm length 80 mm

TEMPERATURE SENSORS ALONG THE COOLING CIRCUIT

STAVE PRESSURE DROP VS MASS FLOW-RATE AT NOMINAL POWER

18

STAVE PRESSURE DROP VS MASS FLOW-RATE AT SEVERAL POWER LOADS

CENTRAL STAVE PRESSURE DROP VS MASS FLOWRATE FOR 0-50%-100% NOMINAL POWER

THE DATA CONFIRM THE EXPECTED BEHAVIOUR

STAVE PRESSURE DROP VS POWER FOR A FIXED MASS FLOW-RATE

COOLING SYSTEM OPERATES INSIDE A STABLE OPERATIVE REGION AND CAN ACCEPT 50 % EXTRA LOAD

POWERING TRANSIENT AT NOMINAL FLOW-RATE

when power is switched on the Flow-rate decreases from ~0,9 to ~0,8 g/s

Stave pressure drop increase due to evaporation

Vice-versa the flow come back to initial value when the power is switched off

OSCILLATING TEMP. ARE OBSERVED AT A CERTAIN POINT IN THE STAVE (PIPE WETTED AND DRYED NEAR THE DRY-OUT REGION)

FROM THIS POINT CO2 VAPOUR TEMPERATURE INCREASES IN TIME

EXPERIMENT IS THEN STOPPED BECAUSE THIS IS NOT A SUSTAINABLE OPERATIVE SITUATION IN THE LONG TERM

FLOW RESTRICTOR MEASUREMENT

OUTLET CONNECTION: I.D. 2 mm PIPE COILED 1 LOOP

INLET CONNECTION: SWAGELOK ORIFICE 0,01 INCH = 0,25 mm I.D.

DATE	2016-04-19
STAVE	"C"
FLOW DIRECTION	UPWARD
INSULATION	ARMAFLEX
STAVE INLET	RESTRICTOR 0,254 mm
STEADY-STATE	ОК
TRACI P SET POINT	17 bar _A
SATURATION TEMP	-23°C
HEATER POWER	75 W "nominal"
MASS FLOW-RATE	0,84 g/s (<i>TRACI V.1 LIMIT</i>)
CALCULATED X out	32 %

THE MEASURED RATIO BETWEEN THE DP OF THE CIRCUIT COMPONENTS SHOULD GUARANTEE THE STABILITY IN THE EVAPORATING PARALLEL CHANNELS

CAPILLARY MEASUREMENT

DATE	2015-10-09
STAVE	"C"
FLOW DIRECTION	UPWARD
INSULATION	ARMAFLEX
STAVE INLET	CAPILLARY 1/16"
STEADY-STATE	ОК
TRACI P SET POINT	16 bar _A
SATURATION TEMP	-28°C
HEATER POWER	75 W "nominal"

CAPILLARY LENGTH = 6 m PRESSURE DROP AT 0,45 g/s ~ 3 bar

CAPILLARY LENGTH = 1 m PRESSURE DROP AT 0,84 g/s ~ 1.6 bar

Darcy–Weisbach equation works fine for the liquid phase into the capillary: $L = V^2$

$$h_f = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g}$$

INLET CONNECTION: CAPILLARY SWAGELOK PIPE 1/16 INCH = 0.88 mm ID CAPILLARY PRESSURE DROP IS PROPORTIONAL TO THE CAPILLARY LENGTH 3 bar CAN BE OBTAINED USING A 2 m LONG 1/16 INCH

INCLINED STAVE OPERATION

TO VERIFY THE OPERATION OF THE COOLING SYSTEM IN THE REAL GEOMETRY CONFIGURATION FOR THE UT PLANES UTbV AND UTaU

- 5° C.W.

+ 5° C.W.

TEMPERATURES AND PRESSURES ~ CONSTANT IN TIME AFTER THE STAVE MOVEMENT THE SYSTEM COMES BACK TO THE SAME STEADY-STATE OPERATION

THE STAVE COOLING SYSTEM IS NOT AFFECTED BY THE - 5° TO + 5° DISPLACEMENT FROM THE VERTICAL POSITION

NEXT TEST PLANNED

COMPARISON OF STAVE A/B/C

- ID 2 mm pipe with 1 coil mounted both at the inlet and the outlet
- calibrated orifice at the inlet
- Characterization of the stave circuit between the manifolds
- for the three different stave «flavours» A/B/C

TEST WITH DOWNWARD FLOW

BOX INSULATION

- Make the cooling test without Armaflex insulation
- controlled humidity cold box
- fluxed with dry air
- More similar to the detector box

CONCLUSIONS

From the thermal management point of view:

- The design and test of all cooling related components of the UT detector is well advanced, in particular the manifold and distribution system
- The correct operation of the CO₂ cooling system for a single stave with a snake pipe has been demonstrated by measurement and simulation

We had these Engineering Design Reviews:

- «Stave construction EDR», CERN, 19 June 2015
- «LHCb CO2 cooling EDR», CERN, 3 December 2015

The **«LHCb UT Detector Cooling requirements»** document has been released.

IDEAS OR DREAMS

C.F.D.

COMPUTATIONAL FLUID-DYNAMIC STUDIES USING FLUENT .. FOR TWO-PHASE EVAPORATING CO2

FILM THE BUBBLES

LOOK INTO THE EXHAUST LINE WITH A VIDEO-CAMERA ..TO LOOK FOR VAPOUR FRACTION EXTIMATION

MICROPHONE FOR THE BUBBLES

USE THE PIEZO-RESISTIVE PRESSURE TRASMITTERS AS "BUBBLES-METERS" ... NEED A DIFFERENT ACQUISITION SYSTEM

R&D

STUDENTS FROM POLITECNICO DI MILANO FOR MORE GENERAL CO2 STUDIES ..COULD BE IMPLEMENTED IN SIMULATION CODE LIKE COBRA

CONTRIBUTIONS

Colleagues from the INFN Milano Design & Mechanical Dpt. Carlo Gesmundo (lines design..) Andrea Capsoni (cooling system) Mauro Monti (FEAs and design) Ennio Viscione (system construction)

For the Power and DAQ system, Labview software: Mauro Citterio Alessandro Andreani Fabrizio Sabatini Andrea Merli

I'd like to aknowledge the CERN EP-DT cooling team and colleagues from other institutes in the LHCb Collaboration.

THANKS FOR THE ATTENTION.

BACK-UP SLIDES =>

UT detector CO2 Cooling Test Results

SNAKE COOLING PIPE DETAILS

There are 2 cooling pipe geometries:

Number: 60 staves

A,B type

Number: 8 central staves C type, it is required to have 2 more passages under 2 ASICs rows

Pipe Length 3 m Heated length = 16 * ~85 mm = 1,36 m

<u>Titanium C.P. 2</u> from HIGH-TECH U.K. Company I.D. 2,025 mm O.D. 2,275 mm

cooling snake pipe produced starting from a 3 .1 m long straight pipe annealed ¼ hard. Bending radius R= 10 mm

Optimal pipe material as for:

- high radiation length
- low thermal expansion coefficient
- Big strength
- Good thermal conductivity
- Thin pipe availability

REF. UNI EN 22768/1 CLASS m

3) TOTAL PIPE DEVELOPMENT LENGTH : 3000 mn

Bended pipes fit very well in the geometry mask after the bending

Titanium has a C.T.E. = 9.4 ppm/K Stainless Steel C.T.E. = 17 ppm/K

This determines its best performance from the contraction point of view Ti Cooling pipe free contraction is ~ 0,8 mm

BENDING TITANIUM PIPES Fit very well in the geometry mask

Titanium to swagelok 1/8 glued + stiffener

Dummy stave with attached reworked fittings on the Titanium snake pipe (dummy C central stave)

Glued joint ARALDITE 2011 Ti pipe –SS reworked dummy fitting tested <u>without stiffener</u> up to 200 bar for several times **34**

STAVE OUTLET CO2 CONNECTION PIPE

OUTLET PIPING, design choice:

2 mm ID

=no diameter restriction

2,5 mm OD

0,25 mm thickness= minimum commercial available Weldable, Pdesign 100 bar ok factor ~ 5

S.S. AISI 304L annealed (and post-bending annealing foreseen in final system)

lf ok

pipe procurement We buy 30 m = 15 pipes 2 m long min quantity From "Castiglioni" company

If ok

welding prototyping We're asking offer to "Real –Vacuum" company To produce prototyp MICRO TIG welded Swagelok 1/8 inch VCR fitting – pipe stave interface Welded to the manifold (no disconnection on manifold side)

Experiment instrumentation

750

1250

350

900

0

-200

-200

-200
TEST SET-UP

TRACI V1 DAQ Data acquisition

TRACI V1 Mass flowrate measurement

By Coriolis flowmeter

Pressures steady-state Nominal power and flux

2015-09-1	6-Pset15ba	ar-75W-F0,	9GS-p.txt		one c	i the measu	rement po	ints
mbar	mbar	mbar	mbar					
PF1	PF2	PF3	PF4					
				mbar	mbar	mbar	mbar	mbar
PF1	PF2	PF3	PF4	PF1	PF2correction-0,123	PF3correction-0,044	DELTA PF1-PF2corr	DELTA PF1-PF3corr
16.208	15.877	16.180	1.380	16.208	15.877	16.180	331	28
16.199	15.872	16.179	1.379	16.199	15.872	16.179	327	20
16.201	15.866	16.182	1.375	16.201	15.866	16.182	335	19
16.201	. 15.871	16.173	1.385	16.201	15.871	16.173	330	28
16.196	15.874	16.185	1.385	16.196	15.874	16.185	322	11
16.201	. 15.874	16.176	1.381	16.201	15.874	16.176	327	25
16.201	. 15.874	16.175	1.383	16.201	15.874	16.175	327	26
16.201	15.876	16.182	1.386	16.201	15.876	16.182	325	19
16.199	15.881	16.177	1.380	16.199	15.881	16.177	318	22
16.198	15.874	16.181	1.379	16.198	15.874	16.181	324	17
16.201	15.875	16.182	1.387	16.201	15.875	16.182	326	19
16.202	15.871	16.180	1.387	16.202	15.871	16.180	331	22

.... Only some data are posted here

16.208	15.887	16.184	1.382	16.208	15.887	16.184	321	
16.210	15.883	16.190	1.381	16.210	15.883	16.190	327	
							media	
							328	
							mbar	
							314	MIN
							345	MAX
							31	MAX-MIN

OLD

NEEDLE VALVE IN THE INLET LINE

DELTA PF1-PF2corr

COBRA simulation for 100% power and nominal 0,9 g/s flux

horyzontal straight pipe correlation

Using **full length 3 m** (more correct for friction calculation)

CoBra V1

COBRA simulation for 100% power and nominal 0,9 g/s flux

horyzontal straight pipe correlation

Using heated length 1,36 m, more correct for heat exchange

🚺 CoBra_V1

CO2 Branch Model-CoBra

CO2 Cooling, V1 Z.Zhang B.Verlaat@, CERN,June, 2014

PURE CO2 SATURATION CURVE

TEMPERATURE AND PRESSURE INSIDE THE EVAPORATION CHANNEL

THE LATENT HEAT OF VAPORIZATION FOR CO2 CAN BE KNOWN FROM THE CO2 PRESSURE-HENTALPY DIAGRAM

IN THE RANGE OF INTEREST DELTA H liq.=> vap. = 280-300 kJ/kg

CO2 physical properties

Set point on TRACIv1: Accumulator pressure P = 15 bar ABS / T saturation= - 28,5 °C

at 15 bar ABS Hentalpy liquid (X=0) Hentalpy vapour (X=100%)

Select fun <u>c</u> tion: Pressure (absolute): 2. Quality:	1. function (p, x) 15 0	bar %	C	alculate egister and Create Accou	nt		
Property name		Pro	operty ID	Results (Liquid)	Results	Results (Vapor)	Units (SI)
1. Thermodynamic Pro	perties - Main						
Pressure (absolute)		p		15.000000000	15.000000000	15.000000000	bar
Temperature		t		-28.5199041122	-28.5199041122	-28.5199041122	°C
Density		d		1069.3872426404	1069.3872426404	39.0557745757	kg/m³
Specific volume		v		0.0009351150	0.0009351150	0.0256044083	m³/kg
Specific enthalpy		h		-370.2278554471	-370.2278554471	-70.1517506628	kJ/kg
			delta h	L-V @15 bar ABS	5 3	00 J/g	
calculated e	exhaust vapour fraction	n Xout					
calculated e							

•	,	,		
F= mass fl	owrate			g/s
Power= el	ctrical he	aters power		W

=> Xout = (Power/F)/ delta h L-V

delta h L-V @15 bar ABS	300 J/g

Xout = 75 / (300 * F)

W/(J/g*g/s) =1

UT detector CO2 Cooling Test Results

DATE	2016-04-19
STAVE	"C"
FLOW DIRECTION	UPWARD
INSULATION	ARMAFLEX
STAVE INLET	RESTRICTOR 0,254 mm
STEADY-STATE	ОК
TRACI P SET POINT	17 bar _A
SATURATION TEMP	-23°C
HEATER POWER	75 W "nominal"
MASS FLOW-RATE	0,84 g/s (<i>TRACI V.1 LIMIT</i>)
CALCULATED X out	32 %

	PRESSURE	TEMPERATURE
	DROP	DROP
	bar	°C
NLET LINE WITH ORIFICE	2,875	4,9
EVAPORATOR CHANNEL	0,314	0,3
OUTLET LINE	0,034	0,2

PF1	PF2	PF3	PF4	PF5	TF1	TF2	TF3	TF4
18,166	17,852	21,041	17,818	1,247	-22,993	-23,308	-18,085	-23,49

UT detector CO2 Cooling Test Results

DATE	2016-04-19
STAVE	"C"
FLOW DIRECTION	UPWARD
INSULATION	ARMAFLEX
STAVE INLET	RESTRICTOR 0,254 mm
STEADY-STATE	ОК
TRACI P SET POINT	17 bar _A
SATURATION TEMP	-23°C
HEATER POWER	75 W "nominal"
MASS FLOW-RATE	0,84 g/s (<i>TRACI V.1 LIMIT</i>)
CALCULATED X out	32 %

DUMMY STAVE HEATING SYSTEM

LHCb UT STAVE - MATERIAL PROPERTIES DATABASE

rev. 2 09/06/2014

Orthotr	opic Material / Type		Thickness [µm]	E _x [GPa]	E _y [GPa]	Ez [GPa]	G _{xy} [GPa]	G _{yz} [GPa]	G _{xz} [GPa]	PR _{xy}	PR _{yz} PR _{yz}	P [Kg/m³]	CTE _x [ppm/K]	CTE _Y CTE _Z [ppm/K]	K _x [W/m K]	K _y [W/m K]	K _z [W/m K]	Fiber Vol. Ratio
CFRP	Fiber K13C Resin Polycyanate RS3	Prepreg K13C/RS3	65	410	5,6	5,6	4,1	4,1	4,1	0,39	0,39	1731	-0,765	15				
STAVE FACEPLATE HYBRID STIFFENER	LAMINATE	Lay-up (0/90/0)	175	276	141		4,1			0,0156		1731	0,933	1,21	64	32	0.5	60%
Isotro	pic Material / Type		Thickness [µm]	E [GPa]							Poisson Ratio PR	P [Kg/m³]	CTE [ppm/K]		K [W/m K]			
CARBON FOAM	ALLCOMP CAR	BON FOAM		0,7							0,25	200	3,5		35			
ROHACELL	ROHACELL	. 51 IG		0,07							0,40	52,1	33 @20°C 24 @-100°C		0,029			
COOLING PIPE	BASELINE TITANIUM	CP grade 2	100	105							0,34	4510	8,6		16,4			
0.D. 2,2 mm	2 nd OPTION STAINLESS STEEL AISI 316		100	193							0,30	8000	16,0		16,3			
SIGNAL/POWER FLEX	КАРТО	DN	230	2.5							0,34	1400	27		0,23			
HYBRID FLEX	КАРТО	N	250	2.5							0,34	1400	27		0,23			
SENSOR			250															
ASIC	SILICO	n	100	110							0,28	2400	2,5		124			
	HYSOL 9396	+35%BN	50	2,75							0.33 guess	1140	39,1 @ 20°C 27,1 @-40°C		1,4			
GLUE	COMPLIANT EPOXY ((SENSOR GLUE)	50	0,005							0,49	2360	200		1,34			
	LOW CONDUCTIVE CO (SENSOR (MPLIANT EPOXY GLUE)	50	same							same	same	same		0,60			
THERMAL VIAS	СОРРЕ	R	250	110							0,34	8930	16,4		385			
WIREBONDS	ALUMIN	UM		68							0,36	2700	24,0		210		50	

Central stave energy balance INLET = OUTLET MASS FLOWRATE in different cooling flow configurations

Design option:

2 - Manifolds both on the bottom (ADDING LOCAL PRESSURE DROPS) and on the top

Design option: 3 - Capillaries both on the bottom and on the top

COOLING PIPE FITTINGS

INFRARED THERMO-CAMERA PICTURE COLD-BOX OPEN

THERMAL FEA

THERMAL LOADS AND BOUNDARY CONDITIONS

WIREBOND DETAIL

WIREBONDS HAVE A THERMAL INFLUENCE ON THE SENSOR HOT SPOT from ASIC to sensor

thermal flux

128 WIREBONDS ALUMINUM WIRE DIAMETER 25 µm

Hypothesis: 128 WIREBONDS PER ASIC - Diam. 25 µm

Total cross section area per ASIC: $A = 0.062832 \text{ mm}^2$ Total cross section area per ASIC of the FE model : $A_m =$ 1.130976 mm² Factor: $A_m/A = 18$ K Aluminum = 210 W/m KEquivalent ribbon: $K_{eq} = 210/18 = 11.7 \text{ W/m K}$

ASICs TEMPERATURE

ASIC temperature calculated $\Delta T = 21.2$ °C over the cooling pipe temperature

Thermal Figure of Merit TFoM = $\Delta T / P$ [°C·cm2/W]

ΔT = max temperature difference betweencooling tube and power dissipation source [°C]P = thermal power flux [W/cm2]meaningful only when P is not zero

Valid only under the ASICs:

P under the ASICs = 1.25 W/cm^2 $\Delta T = 21.2 \text{ °C}$ \Rightarrow TFoM ≈ 17 [°C·cm2/W]

Thermal F.E.A. - thermal performances for the actual design

RESULTS SUMMARY TABLE (for «C» central stave, sensors T1, T2, T3)

	STIFFENER TYPE	STIFFENER MATERIAL	SENSOR A1.T1 MAX DELTA T [°C]	SENSOR A1.T2 MAX DELTA T [°C]	SENSOR A1.T3 MAX DELTA T [°C]	ASICs MAX DELTA T OVER THE PIPE [°C]
	CERAMIC STIFFENER	PBN - THICKNESS 500 μm	2.2	2.1	5.1	21
1.0 - 1 - (1.0) (1.0) - (1.0) (1.0) - (1.0)	WITH SLITS	AIN- THICKNESS 250 μm	2.2	2.0	5.0	17
	CERAMIC STIFFENER	PBN - THICKNESS 500 μm	2.8	2.7	6.7	20
<u> </u>	WITHOUT SLITS	AIN- THICKNESS 250 μm	2.5	2.4	5.9	17
	CERAMIC STIFFENER	PBN - THICKNESS 500 μm	2.0	1.9	3.0	23
E	PARTS	AIN- THICKNESS 250 μm	1.8	1.8	2.2	19

CONCLUSIONS:

- THE TEMPERATURE DIFFERENCE ACROSS THE SENSORS IS ALWAYS ACCEPTABLE FOR THE INNERMOST SENSORS T1 AND T2 (around 2 °C)
- THE TEMPERATURE DIFFERENCE ACROSS THE SENSOR T3 (in the central stave) ACCEPTABLE FOR BOTH THE CERAMIC MATERIALS IN THE DESIGN GEOMETRY <u>WITH SLITS (around 5 °C)</u>

=> Both PBN and AIN solutions provide efficient heat transfer

- WITHOUT SLITS THE TEMPERATURE DIFFERENCE WORSEN. SENSOR T3 becomes critical in «C» stave
- AIN IS BETTER THAN PBN from the thermal point of view.
- ASICs TEMPERATURE ARE ALWAYS WITHIN SPECIFICATION. Operative temp. cooling pipe will be ~ -15 °C, ASICs ~ +5 °C, with a large margin against the limit of 40 °C.

FEA DETAIL

Identification of the criticality => optimization of the design - extension of the carbon foam under the sensor

 \Rightarrow DETECTOR FACEPLATE AND STRUCTURE IS ALWAYS 1-6 °C OVER THE COOLING PIPE TEMPERATURE \Rightarrow SENSOR TEMPERATURE IS 1-7 °C OVER THE COOLING PIPE TEMPERATURE

TO RESPECT REQUIREMENT WITH MARGINS AND TAKING IN ACCOUNT CO2 INTERNAL PIPE H.T.C. => COOLING PIPE 6220 °C

THERMO-STRUCTURAL FEA

Thermo mechanical sensor thermal deformation

MAX DISPLACEMENT IN THE SENSOR A1.T3: 150 μ m almost all in the vertical direction Z axis, out of sensor plane

Thermo mechanical sensor thermal deformation

STRESS IN THE SILICON SENSOR

EQUIVALENT VON-MISES STRESS CALCULATED IN THE SILICON SENSOR A1.T3: 1 e-5 MPa IS THE MAXIMUM VALUE, NEAR THE WIRE-BONDING MEDIUM STRESS LEVEL AS LOW AS FRACTION OF A PASCAL

=> Conclusion:

Calculated deformations of the sensor, in vertical direction, are not representing a particular concern.

STAVE THERMO-MECHANICAL DEFORMATION

- PIPE TEMPERATURE SET TO 25 °C
- THERMAL FIELD CALCULATED AT NOMINAL POWER
- THEN USED FOR THE STRUCTURAL FEA

Thermo mechanical F.E.A. - full length stave structural studies

H.M. CFRP K13C-RS3 DELTA T = - 60°C MAX TOTAL DEFORMATION: 0.20 mm

=> effect induced by the pipe contraction

H.M. CFRP K13C-RS3 MDP = 10 MPa MAX TOTAL DEFORMATION: 0.01 mm

=> Deformation induced by the pipe pressurization is almost negligible

FULL STAVE THERMO-MECHANICAL DEFORMATION

FULL STAVE UT STAVE type C THERMAL ANALYSIS RESULTS SENSORS TEMPERATURE

PIPE TEMPERATURE SET TO -25 °C

UT STAVE type C - THERMO-MECHANICAL ANALYSIS: BCs

ONE END OF THE STAVE HAS BEEN CONSTRAINED AS FIXED SUPPORT.

THE OTHER END HAS BEEN CONSTAINED AS FIXED IN TRANSVERSAL (X) AND NORMAL TO MODULE (Z) DIRECTIONS AND FREE TO SLIDE IN THE LONGITUDINAL (Y) DIRECTION.

FOR BOTH ENDS EITHER THE TWO PLANAR FACES OF THE STAVE MOUNT IN ALUMINUM ALLOY HAVE BEEN CONSTRAINED.

UT STAVE type C - THERMO-MECHANICAL ANALYSIS UY RESULTS

UT STAVE type C - THERMO-MECHANICAL ANALYSIS: FE MODEL and LOAD

THE THERMAL MODEL HAS BEEN SWITCHED IN THE MECHANICAL MODEL, CHANGING THE ELEMENTS TYPE BUT NOT THE NODES QUANTITY AND LOCATIONS.

THE LOAD IS THE THERMAL FIELD OBTAINED BY THE THERMAL ANALYSIS AND IMPORTED IN THE MECHANICAL MODEL, NODE BY NODE.

THE COEFFICIENTS OF THERMAL EXPANSION OF THE MATERIALS HAVE BEEN ATTRIBUTED.

STAVE MODAL ANALYSIS

PHASE CHANGE THERMAL INTERFACE THERMFLOW T725 UNDERNEATH THE STIFFENERS

> GLUE DOT NE0001 UNDERNEATH THE FREE SENSORS CORNER

STAVE MODAL ANALYSIS

STAVE MODAL FREQUENCY SPECTRUM

	Tabular Data		
ANSYS		Mode	Frequency [Hz]
	1	1,	16,479
- K10.2	2	2,	44,192
	3	3,	55,53
	4	4,	83,781
	5	5,	100,46
4	6	6,	131,73
	7	7,	162,75
1	8	8,	170.68
	9	9.	185,27
1	10	10.	204,96
	11	11.	217.52
	12	12.	227.79
	13	13.	229.55
MODE 1	14	14	231.25
10 5 11-	15	15.	236.97
16.5 HZ	16	16.	237.72
	17	17.	242.15
	18	18	244 48
	19	19	249.16
	20	20.	249.73
	21	21.	253.14
	22	22	262
	23	23	290.82
	24	24	296.76
	25	25	319.11
	26	26	324 17
	27	27	330.1
	28	28	330.16
	29	29.	331.66
	30	30	331 79
	31	31.	331.97
	32	32.	333.6
	33	33.	335.83
	34	34.	336.72
	35	35.	338.11
	36	36,	344,83
	37	37.	363.
	38	38.	368.66
	39	39.	387.23
	40	40.	406.82
	41	41.	419.48
	42	42.	446.51
1	43	43.	464.81
V V	44	44.	530.65
	45	45.	531.62
	46	46.	533.14
	47	47.	534.13
	48	48.	543.72
Z A	49	49.	545.07
	50	50.	547.62
-6519			76

