HIGGS CROSS SECTION AND BRANCHINGRATIO CALCULATIONS

Elisabetta Furlan

ETH ZURICH

Standard Model at LHC 2016

Pittsburgh, May 3 - 6 2016

"Standard Model at the LHC"

The next aim of the LHC is to test the Higgs sector

• but do we have "only" a Standard Model Higgs sector?

so far, it looks pretty

much like it..

Parameter	ATLAS+CMS
$\kappa_j \ge 0$	Measured
κ_Z	$1.00^{+0.10}_{-0.11}$
κ_W	$0.91^{+0.09}_{-0.09}$
κ_t	$0.89^{+0.15}_{-0.13}$
$\kappa_{ au}$	$0.90^{+0.14}_{-0.13}$
κ_b	$0.67^{+0.22}_{-0.20}$
κ_{μ}	$0.2^{+1.2}_{-0.2}$

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

Precision Higgs physics

- uncertainties are still large (\mathcal{O} (10%) or more)
- lot of room for improvement

Precision Higgs physics

- uncertainties are still large (O (10%) or more)
- lot of room for improvement
- precise measurements and (more) precise theory predictions are fundamental!

The theory error: decays

Situation in general well under control:

theory error typically at the percent level

$$H o \gamma \gamma$$

NLO QCD, NLO electroweak

$$H o au au, H o b ar{b}$$

 $H \rightarrow \tau \tau, H \rightarrow bb$ NLO electroweak

or lower

$$H \rightarrow VV \rightarrow 4f$$

NLO QCD and electroweak corrections, including finalstate interference

$$H o b ar{b}$$

N⁴LO QCD corrections (theory error $\mathcal{O}(0.1\%)$

The theory error: decays

Exception:

 $H
ightarrow Z \gamma$ electroweak corrections unknown, yielding a \sim 5% error

The theory error: decays

uncertainty on the branching ratios well under control

Decay channel	BR	Theory uncertainty
$H o \gamma\gamma$	2.27×10^{-3}	+1.73% -1.72%
H o ZZ	2.62×10^{-2}	+0.99% -0.99%
H o WW	2.14×10^{-1}	+0.99% -0.99%
H o au au	6.27×10^{-2}	+1.17% -1.16%
$H o bar{b}$	5.82×10^{-1}	+0.65% -0.65%
$H o Z\gamma$	1.53×10^{-3}	+5.71% -5.71%
$H o \mu \mu$	2.18×10^{-4}	+1.23% -1.23%

• gluon fusion is the main Higgs production mechanism...

• ... and therefore drives the current uncertainty in the extraction of the Higgs couplings

$\sqrt{s} = 13 \text{ TeV}$	σ [pb]	$\delta\sigma^{theo}/\sigma$
ggH	44	+7.4% -7.9%
VBF	3.7	+0.7% -0.7%
WH	1.4	+0.7% -1.5%
ZH	0.87	+3.8% -3.8%
	•	

LHC Higgs cross section
WG recommendations, 2014

• ... and therefore drives the current uncertainty in the extraction of the Higgs couplings

$\sqrt{s} = 13 \text{ TeV}$	$\sigma [pb]$	$\delta\sigma^{theo}/\sigma$
ggH	44	+7.4% -7.9%
VBF	3.7	+0.7% -0.7%
WH	1.4	+0.7% -1.5%
ZH	0.87	+3.8% -3.8%
	•	•

NNLO+NNLL QCD NLO EW

LHC Higgs cross section
WG recommendations, 2014

• ... and therefore drives the current uncertainty in the extraction of the Higgs couplings

$\sqrt{s} = 13 \text{ TeV}$	σ [pb]	$\delta\sigma^{theo}/\sigma$	
ggH	44	+7.4% -7.9%	
VBF	3.7	+0.7% -0.7%	NNLO QCD NLO EW
WH	1.4	+0.7% -1.5%	NNLO QCD NLO EW
ZH	0.87	+3.8% -3.8%	
	•		LHC Higgs cross s WG recommenda

• ... and therefore drives the current uncertainty in the extraction of the Higgs couplings

$\sqrt{s} = 13 \text{ TeV}$	$\sigma [pb]$	$\delta\sigma^{theo}/\sigma$
ggH	44	+7.4% -7.9%
VBF	3.7	+0.7% -0.7%
WH	1.4	+0.7% -1.5%
ZH	0.87	+3.8% -3.8%
	•	

gluon channel: NLO QCD

others: NNLO QCD

NLO EW

LHC Higgs cross section
WG recommendations, 2014

- Very similar numbers in the preliminary Higgs cross section WG recommendations for 2016
- Difference: inclusion of partial NNLO QCD results and of NLL QCD resummation for the gluon initiated ZH channel

 Ferrera, Grazzini and Tramontano, PLB740 (2015) 51-55
 - → full NNLO available now

Campbell, Ellis and Williams, 1601.00658

Dawson, Han, Lai, Leibovich and Lewis, PRD86 (2012) 074007

• To be included: N³LO QCD corrections to ggH!

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, Lazopoulos and Mistlberger, arXiv:1602.00695

Higgs Production at N³LO

- At LO, gluon-fusion Higgs production is mediated by one loop of heavy quarks
 - \rightarrow N³LO \rightarrow four loops! (~15000 diagrams)
- huge number of contributions from "real" radiation (~100000 interference diagrams)

Baikov et al., Phys. Rev. Lett. 102, 212002 (2009); Gehrmann et al., JHEP 1006, 094 (2010)

Gehrmann et al., JHEP 1201, 056 (2012); Duhr et al., Phys. Lett. B 727, 452 (2013); Li et al., JHEP 1311, 080 (2013)

Anastasiou et al., JHEP 1312, 088 (2013); Kilgore, Phys. Rev. D 89 073008 (2014)

Anastasiou et al., JHEP 1307, 003 (2013)

Higgs Production at N³LO

"Ingredients"

• (rescaled) heavy-quark effective field theory

Heavy quark effective theory

 for a light Higgs boson, the top quark can be integrated out

→ construct an heavy quark effective theory

$$\mathcal{L} \to \mathcal{L}_{\text{light}} - \frac{\alpha_S}{4v} C_1 H G^a_{\mu\nu} G^{a\mu\nu}$$

Heavy quark effective theory

 for a light Higgs boson, the top quark can be integrated out

- → construct an heavy quark effective theory
- "pretty good" approximation

"Refinement"

• "rescale" heavy-quark effective theory by the correct LO through N³LO

$$\sigma_{rEFT}^{N^{x}LO} = R_{LO} \times \sigma_{EFT}^{N^{x}LO}$$

$$R_{LO} = \frac{\sigma_{exact}^{LO}}{\sigma_{EFT}^{LO}}$$

 at NLO reduces the discrepancy from the exact result from 5% to 0.7%!

Higgs Production at N³LO

"Ingredients"

- (rescaled) heavy-quark effective field theory
- Higgs threshold expansion

Threshold expansion

 The largest contribution comes from the Higgs threshold region

Threshold expansion

- The largest contribution comes from the Higgs threshold region
 - compute the cross section as an expansion around threshold

$$\hat{\sigma}^{N^3LO}(z) = \hat{\sigma}_{SV} + \sum_{n=0}^{N_{trunc}} \sigma^{(n)} (1-z)^n$$

$$(N_{trunc} = 37)$$

C. Anastasiou et al., PRL 114 (2015) 212001

Higgs Production at N³LO

"Ingredients"

- (rescaled) heavy-quark effective field theory
- Higgs threshold expansion
- full quark-mass effects (from top, bottom, charm) through NLO
- 2-loop EW, 3-loop mixed QCD-EW corrections
- convolution with parton distribution functions
- uncertainties (scale, pdf, α_s , missing contributions, approximations)

Uncertainties

 due to the approximations introduced, missing contributions, PDFs, uncertainties on the input parameters

$\delta({ m PDF})$	$\delta(lpha_s)$	$\delta(ext{scale})$	$\delta({ m trunc})$	$\delta(ext{pdf-TH})$	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
±0.90	+1.27 -1.25	+0.10 -1.15	±0.18	± 0.56	±0.49	± 0.40	± 0.49	pb
± 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	\pm 1	± 0.83	± 1	%

in quadrature

linearly

Uncertainties

• due to the approximations introduced, missing contributions, PDFs, uncertainties on the input parameters

$\delta({ m PDF})$	$\delta(\alpha_s)$	$\delta(ext{scale})$	$\delta({ m trunc})$	δ (PDF-TH)	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
±0.90	+1.27 -1.25	+0.10 -1.15	±0.18	± 0.56	±0.497	aditio	nally)	pb
±1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	\pm 1	negle	eted	%

in quadrature

linearly

(the scale variation error at NNLO is so large that they are not relevant)

Uncertainties

 due to the approximations introduced, missing contributions, PDFs, uncertainties on the input parameters

$\delta({ m PDF})$	$\delta(lpha_s)$	$\delta(ext{scale})$	$\delta({ m trunc})$	δ (PDF-TH)	$\delta(\mathrm{EW})$	$\delta(tbc)$	$\delta(1/m_t)$	
±0.90	+1.27 -1.25	+0.10 -1.15	±0.18	± 0.56	±0.49	± 0.40	± 0.49	pb
$ \pm$ 1.86	+2.61 -2.58	+0.21 -2.37	±0.37	\pm 1.16	\pm 1	±0.83	± 1	%

can be improved/eliminated

The N³LO cross section

The N³LO Higgs boson production cross section and the associated errors are

$$\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} \,\,(\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) \,\,(\mathrm{PDF} + \alpha_s)$$

or, with the "traditional" errors,

$$\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-3.90\%)}^{+2.22 \,\mathrm{pb} \,(+1.73\%)} \,\,(\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) \,\,(\mathrm{PDF} + \alpha_s)$$

New HXSWG recommendations*

$\sqrt{s} = 13 \text{ TeV}$	σ [pb]	$\delta\sigma^{theo}/\sigma$
ggH	44	+7.6% -8.1%
VBF	3.8	+0.4%
WH	1.4	+0.5% -0.7%
ZH	0.88	+3.8% -3.1%
•	•	

+4.7% -6.7%

^{*} the N³LO gluon-fusion result is currently under discussion

Summary

- The theory error on the Higgs branching ratios is well under control, typically at the level of a few percent
- On the production, there has been a reduction on the gluon-fusion uncertainty by a 60-80% due to the inclusion of the N³LO corrections
 - could be reduced to 20-50% of the current (preliminary) HXSWG recommendations!
- Other production channels well under control

Higgs decay calculations

Available results:

$$H o \gamma \gamma$$

• full NLO QCD corrections (theory error ~ 1%)

Zheng and Wu, PRD42, 3760 (1990); Djouadi et al., PLB257, 187 (1991); Dawson and Kauffman, PRD47, 1264 (1993); Djouadi, Spira, and Zerwas, PLB311, 255 (1993); Melnikov and Yakovlev, PLB312, 179 (1993); Inoue et al., Mod. Phys. Lett. A9, 1189 (1994), Spira et al., Nucl. Phys. B453, 17 (1995)

NLO electroweak corrections (theory error ~ 1%)

Aglietti et al., PLB595, 432 (2004); Degrassi and Maltoni, PLB600, 255 (2004); Actis et al., PLB670, 12 (2008), PLB600, 57 (2004); Degrassi and Maltoni, Nucl. Phys. B724, 183 (2005); Aglietti et al., arXiv:hep-ph/0612172 (2006)

Higgs decay calculations

Available results:

$$H \to VV \to 4f$$

• full NLO QCD and electroweak corrections, including final-state interference (theory error below percent level)

Bredenstein Depres Dittrater and Weber PRD 74 (2006) 015004

Bredenstein, Denner, Dittmaier and Weber, PRD 74 (2006) 013004 and JHEP 0702 (2007) 080

Higgs decay calculations

Available results:

$$H \to b\bar{b}$$

• N⁴LO QCD corrections (theory error ~ 0.1%!)

Gorishnii, Kataev, Larin, and Surguladze, Mod. Phys. Lett. A5 (1990) and PRD43 (1991) 1633–1640; Kataev and Kim, Mod. Phys. Lett. A9 (1994) 1309–1326; Surguladze, PLB341 (1994) 60–72, arXiv:hep-ph/9405325; Larin, van Ritbergen, and Vermaseren, PLB362 (1995) 134–140; Chetyrkin and Kwiatkowski, NPB461 (1996) 3–18; Chetyrkin, PLB390 (1997) 309–317; Baikov, Chetyrkin, and Kuhn, PRL 96 (2006).

$$H \to au au, H \to bar{b}$$

• NLO electroweak corrections (theory error around 1%)

Fleischer and Jegerlehner, PRD23 (1981) 2001–2026; Bardin, Vilensky, and Khristova, Sov. J. Nucl. Phys. 53 (1991) 152–158; Dabelstein and Hollik, Z. Phys. C53 (1992) 507–516; Kniehl, NPB376 (1992) 3–28.