xTCA Developments at Technical University of Lodz

Dariusz Makowski

Agenda

- European XFEL and LLRF System
- First Approach
- New Standard New Possibilities
- MTCA.4-based LLRF Control System
- Image Acquisition System

European X-ray Free Electron Laser at DESY

- EXFEL is composed of 800 super-conducting cavities
- Installed in 100 cryo-modules
- LLRF system is controlled by 25 RF stations (A1-A25)
- Requirements for stability:
 - <0.01% amplitude</p>
 - <0.01° phase at 1.3 GHz</p>
- Requires high availability
 - Looking for a new standard for LLRF system

LLRF System for EXFEL Accelerator

LLRF at DESY

- VME standard:
 - Old standard ('81)
 - Control 8 cavites
 - Lack of diagnostics and and management
 - Expensive CPU

...

- Limited resources
- Limited connectivity

Courtesy of S. Simrock

Comparison of Selected Standards

Carrier Board for LLRF System

...and Final Product

- Provides processing power for LLRF algorithms
- Provides accommodation for LLRF components
 - Down converters
 - Digitizers
 - Vector Modulator
 - Timing, synchronisation
 - Protection (interlocks)
- Only 3 AMC slots
- PCIe switch, Virtex 5 FPGA, TigerShark DSP, RAM
- Management IPMC
- All connectivity on backplane
- Very poor quality of RF signals

Vector Modulator and Timing Module

Timing module

- Designed with collaboration with WUT
- Provide reference for LLRF hardware
- Receive MO signal and generate 3 frequencies

B2010-2

- **Vector Modulator**
- Designed with collaboration with WUT
- Modulates RF signal from MO and generates signal for klystron
- Single RF channel

Radiation Monitoring Module

- Measures neutron fluence and gamma dose
- SRAM-based sensor for neutron fluence
- RadFET (Tyndall) dosimeter for gamma dose measurement

Calibration factor	SRAM	RadFET
Neutron fluence Silicon kerma	$1.85 \times 10^4 \text{ n cm}^{-2}/\text{SEU}$ $1.17 \times 10^{-3} \text{ Gy}(\text{Si})/\text{SEU}$	
Gamma dose	_	46.3 mV/ Gy(SiO ₂)

New Standard – New Possibilities

MIcro**TCA**TM

PICMG® Specification MTCA.4 R 1.0 Draft 0.9xi

MicroTCA Enhancements for Rear I/O and Precision Timing

18 July 2011

For Member Review Only - Do Not Claim Compliance To or Distribute This Draft Specification

Open Modular Computing Specifications

LTCA®

MTCA.4 Chassis with AMC modules

LLRF Controller Module - Requirements

- Provides computation power for LLRF algorithms
- Provides interface to VM, diagnostics, management

Module Requirements:

- ★ PCIe main parameters of the computation module, latency <50 us, throughput ~16 Gbps</p>
- LLL data from DAQ modules and to Vector Modulator, latency <200 ns, throughput >6 Gbps
- ★ Optical connection for communication with other LLRF subsystems (master-slave system, LFD compensation, BAMs, etc...), latency <200 ns, throughput >6 Gbps

XILINX°

TO

CENS

- Trigger and interlock signals provided on backplane
- Compliant with PICMG MTCA.4 specification
- Module management, diagnostics, high availability

Zone 3

Class D1.2

LLRF Controller with Vector Modulator

LLRF Controller (left) and Vector Modulator (right), version 1.0

DAMC-TCK7 – Signal Processing Module, ver. 2

Features:

- Xilinx Kintex 7 XC7K355T/XC7K420T FPGA
- SDRAM: 16 Gb DDR3 SDRAM@533 MHz
- Connectivity:
 - 24 or 28 gigalinks, data rate max. 12.5 Gbps
 - PCle x4, gen. 3 (32 Gbps)
 - Low-latency links:
 - Backplane: 10x 10 Gbps
 - Front panel: 8x 12.5 Gbps (SFP+)
 - Zone 3: D1.2 Digital Class (4x 10 Gbps)
- Flexible clock distribution and synchronization
- IPMI management and diagnostics
- FPGA firmware upgrade support
- Modules now available from Vadatech (CM045)

DRTM-VM2 – Vector Modulator, ver. 1

Version 1

- No standardized Zone 3 connector
- Limited clock distribution
- Old version of RF backplane connectivity
- IPMI controller not compliant with MTCA.4

Version 2

- Frequency range: 1-6 GHz (L and S-band)
- Better linearity, lower phase noise floor
- Improved reference power signal distribution scheme
- 16-bit, 160 MSps DACs
- Improved Interlock scheme
- Improved clock distribution circuit
- Power diagnostics
- RF backplane support

Designed with collaboration with WUT

Zone 3 Connection – Should We Have Standard?

- Zone 3 connectivity was not standardised by MTCA.4 spec.
- Zone 3 Proposed: Class A1.x and D1.x
- Simple vs Complex E-keying
- Software E-keying should be developed (...in progress)

	а	b	с	d	е	f
1	PWR+12V	PWR+12V	PS#	AMC_SDA	RTM_TCK	RTM_TDO
2	PWR+12V	PWR+12V	MP+3.3V	AMC_SCL	RTM_TDI	RTM_TMS
3	SFP1-TX+	SFP1-TX-	SFP_AMC_CLK+	SFP_AMC_CLK-	SFP2-TX+	SFP2-TX-
4	SFP1-RX+	SFP1-RX-	SFP_RTM_CLK+	SFP_RTM_CLK-	SFP2-RX+	SFP2-RX-
5	INTERLOCK 1	INTERLOCK 2	P30_IO+	P30_IO-	P30_IO+	P30_IO-
6	P30_IO+	P30_IO-	P30_IO+	P30_IO-	P30_IO+	P30_IO-
7	P30_IO+	P30_IO-	P30_IO+	P30_IO-	P30_IO+	P30_IO-
8	AMC_CLK1+	AMC_CLK1-	AMC_CLK2+	AMC_CLK2-	AMC_CLK3+	AMC_CLK3-
9	RTM_CLK1+	RTM_CLK1-	RTM_CLK2+	RTM_CLK2-	RTM_CLK3+	RTM_CLK3-
10	P30_IO+	P30_IO-	P30_IO+	P30_IO-	P30_IO+	P30_IO-
1	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
2	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
3	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
4	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
5	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
6	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
7	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
8	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
9	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
10	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-

Deliverables: Analog and Digital Classes

Digital Class D1.2

Class D1.2 / Zone			a	b	с	d	е	f
MTCA 4 management J30	J30	1	PWRA1	PWRB1	PS#	SDA	TCK	TDO
WTOA.4 management		2	PWRA2	PWRB2	MP	SCL	TDI	TMS
Digital clocks fixed I/O		3	AMC_CLK1+	AMC_CLK1-	RTM_CLK1+	RTM_CLK1-	OUT2+	OUT2-
Digital Clocks lixed I/O		4	AMC_TCLK+	AMC_TCLK-	OUT0+	OUT0- OUT1+	OUT1+	OUT1-
		5	P30_IO+ / CC *	P30_IO+ / CC *	P30_IO+	P30_IO-	P30_IO+	P30_IO-
		6	P30_IO+ / CC *	P30_IO+ / CC *	P30_IO+	P30_IO-	P30_IO+	P30_IO-
Licor configuration		7	P30_IO+	P30_IO-	P30_IO+	P30_IO-	P30_IO+ / CC	P30_IO+ / CC
User -conliguration		8	P30_IO+	P30_IO-	P30_IO+	P30_IO-	P30_IO+ / CC	P30_IO+ / CC
		9	P30_IO+ / CC*	P30_IO+ / CC*	P30_IO+	P30_IO-	P30_IO+	P30_IO-
		10	P30_IO+ / CC*	P30_IO+ / CC*	P30_IO+	P30_IO-	P30_IO+	P30_IO-
	J31	1	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
		2	P31_IO+	P31_IO-	P31_IO+	P31_IO-	P31_IO+	P31_IO-
l		-	D34 10 - 1 00	D34 10 1 00	DAL IO.	Day Io	DALIO.	D34 10

Analog Class A1.1

Class A1.1 / Zone			a	b	c	d	e	f
MTCA 4 management	J30	1	PWRA1	PWRB1	PS#	SDA	TCK	TDO
WTO/1.4 Munugomont		2	PWRA2	PWRB2	MP	SCL	TDI	TMS
Standard Gbit-Link		3	SFP-CLK+	SFP-CLK-	SFP-RX+	SFP-RX-	SFP-TX+	SFP-TX-
User-configuration		4	D3+	D3-	D4+	D4-	D5+	D5-
		5	D6+	D6-	D7+	D7-	D8+	D8-
Digital fixed I/O		6	AMC_TCLK+	AMC_TCLK-	OUT0+	OUT0-	OUT1+	OUT1-
Shielding		7	gnd	gnd	gnd	gnd	gnd	gnd
Digital clock inputs		8	RTM_CLK4+	RTM_CLK4-	RTM_CLK2+	RTM_CLK2-	RTM_CLK5+	RTM_CLK5+
Digital Clock Inputs		9	RTM_CLK0+	RTM_CLK0-	RTM_CLK3+	RTM_CLK3-	RTM_CLK1+	RTM_CLK1-
Shielding		10	gnd	gnd	gnd	gnd	gnd	gnd
	J 31	1	CH9_PA+	CH9_PA-	DAC0+	DAC0-	CH9_TF+	CH9_TF-
			1					1

Source: mtca.desy.de

Management and Diagnostics in xTCA Systems

IPMI at ATCA

ATCA carrier module

- Developed IPMC based on Renesas uC
- Could manage 3 AMC modules
- FRU, E-keying and backplane management
- **Initial project for AMC**
- Basic IPMI functions

MMC 1.0 - Smart and Easy MMC Solution

- DESY MMC V1.0 is a set of hardware and software building blocks
- Allows AMC/RTM designers to develop management for MTCA.4 cards
- Can be fully customized or used as a drop-in module based on fixed schematics and binary FW image
- Developed together with DESY collaboration partners
 - DMCS is responsible for hardware as well as supports firmware development
- Schematics and source code available → Starter Kit
- DESY Approach:
 - Idea: Provide HW and FW building blocks, let user decide what to copy
 - Philosophy: "If you know better, modify it. If you don't know, copy it"

Source: MMC 1.0 Evalkit datasheet

MMC 1.0 – hardware structure

Image Acquisition System

ITER Project

Challenges in design of imaging systems for plasma diagnostics:

- Plasma diagnostics monitor plasma temperature, density, radiative properties, first-wall resilience
- 200 cameras:
 - 1-8 Mpx @ 50-50000 FPS
- Throughput can easily exceed 8 Gb/s per camera
- Scalability and high reliability
- 50 ns synchronization accuracy

ITER Diagnostic Port Plugs

Image Acquisition and Processing with MTCA.4

Image Acquisition – External CPU

MFG4 - Frame Grabber Card for MTCA.4

- Cost-effective solution for high-performance image acquisition systems
- Designed as FMC carrier module (HPC and LPC) with FMC extension modules:
 - Camera Link (Base, Full, Ext-Full)
 - CoaXPress
 - Universal IO module
 - Firmware support for selected protocols
- Provides all resources for data acquisition and control systems (FPGA processing power, SDRAM, clocks distribution, trigger and interlock signals)
- Based on Xilinx Artix 7 (XC7A200T) FPGA
- RTM Zone 3 connector (D1.2 Digital Class)

MPCIE-16 - PCIe Link for MTCA.4

- Allows to overcome the limitations of MTCA.4 PCIe connectivity
- More processing power using external CPU
- Possibility to use powerful GPU
- Supports PCIe x16, gen. 3 via copper cable
- Data throughput up to 128 Gbps
- Cost effective solution for MTCA.4
 System
- No additional drivers or software needed

Thank you for your attention

