



# "CMS News"

#### M. Hansen, CERN

J. Hegeman, CERN; E. Hazen, BU; T. Gorski, UW





- Semi-custom VME crates from WIENER
  - Common backplane except ECAL (HP J0)
- Crate controllers from CAEN
  - 6U and 9U VME cards
  - PClexpress controller card serving up to four branches
    - → Formerly PCI controller card serving one branch
  - Register access support by HAL
- System monitoring and archive of read values through cDCS
- No CMS integration support
  - DAQ, TTC, TTS, etc.





- Industry standard shelfs with required backplane options
  - Redundant telecom backplane with AMC port 2 and 3 routed to MCH1 and MCH2 respectively
- Industry standard system controller (MCH) from two recommended vendors
- Industry standard power modules from two recommended vendors
- Industry standard bulk power supply from one recommended vendor
- CMS integration support through "AMC13" Located in redundant MCH slot
  - TTC and TTS, DAQ fan-in
- Register access through Ethernet
  - Ethernet switch in MCH
- System monitoring and archive of read values through cDCS
  - Although not entirely implemented yet



#### CMS application of microTCA Areas possible to improve



- System power at its limit
  - Larger more powerful FPGAs difficult to integrate
- Cooling capacity at its limit
  - Boards essentially covered with a heat sink
- DAQ bandwidth insufficient for some applications
  - E.g. Pixel readout per AMC; not a technical problem but has lead to endless discussions
- Slow Control bandwidth is sufficient
  - Although shared with e.g. local DAQ
- Several different solutions and implementations of e.g. IP address assignment even though the problem to solve is identical for all systems
  - Again, the subject lead to endless discussions that ended in divergence



#### CMS application of microTCA Areas possible to improve



- System power at its limit ATCA?
  - Larger more powerful FPGAs difficult to integrate
- Cooling capacity at its limit ATCA?
  - Boards essentially covered with a heat sink
- DAQ bandwidth insufficient for some applications ATCA?
  - E.g. Pixel readout per AMC; not a technical problem but has lead to endless discussions
- Slow Control bandwidth is sufficient
  - Although shared with e.g. local DAQ
- Several different solutions and implementations of e.g. IP address assignment even though the problem to solve is identical for all systems *Common Approach!* 
  - Again, the subject lead to endless discussions that ended in divergence







#### Size advantage over microTCA

not as large as one would think

→ 50% more area, 100% more front panel

- Power and associated Cooling advantage over microTCA
  - 400% more available power
- CMS ATCA back end blade: CBE blade
  - May require tuning for larger projects for link count / FPGA size
- CMS integration ATCA switch module: "Blade13"
  - TTC++, TTS++, DAQ interface
- Common IPMC
  - E.g. design supported by CERN PH-ESE; including hardware module; scheduled early 2016.



## **Possible generic CMS ATCA shelf**



continuing the microTCA direction



- Common shelf specification
- Generic Blade with, perhaps, custom FPGA and link count but with standard services
- Hub card with CMS interfaces: TCDS++ and DAQ with standard services
  - Allowing for 800 Gbps DAQ per shelf or more without bending standards



# **Standard Services wish-list**



### • IPMC

- Well supported open firmware / software as an FRU for forward compatibility
- Ethernet End point and Register access
  - Either well supported e.g. IPbus or equally well supported Embedded e.g. linux TBD as an FRU for forward compatibility
    - → FRU size to fit a single width AMC card
    - → Several commercial SOMs available that meet size requirement
    - → If more processing power required e.g. COM Express mini with an ATOM CPU – not applicable to AMC
  - Firmware upload / upgrade mechanism
- Power bank
  - Predefined main voltages with support for monitoring and customisation

**Electronics and Online for phase 2 20160229** 

M. Hansen, J. Hegeman, CERN



# ATCA in CMS



- *Suggestions* for ATCA applications in CMS:
  - Single shelf connection for TCDS
  - Option for single-point DAQ if bandwidth is enough
    - Could be either COTS switch blade or custom "Blade13"
- Some other ideas:
  - Suggest special use for slot 2 for timing (details next)
  - Plan for at least standard GbE base switch in slot 1 (could be a fancy 40GbE switch blade if desired...)



# **ATCA Backplane connectivity**



- Several clocks sourced from hub slots, all bussed to node slots
  - CLK1
    - → 8 KHz fixed
  - CLK2
    - → 19.44 MHz fixed
  - CLK3

→ Up to 100 MHz user specified

- As these clocks are bussed and not p-p they may or may not be suitable for any high precision clock distribution, especially since the MLVDS drivers have proven to be sensitive to temperature
- I have omitted any redundancy scheme in order to simplify this talk – in addition, do we need redundancy on this level? Electronics and Online for phase 2 20160229 M. Hansen, J. Hegeman, CERN



### There is already a document



#### https://www.picmg.org/wp-content/uploads/PDG\_0-R1\_0-RELEASED-2013-04-231.pdf

#### Physics Design Guide for Clocks, Gates & Triggers in Instrumentation

PDG.0 R1.0 23 April 2013



you should read it!





# **ATCA Timing Options**



Here is what I took away from the document....

- Option 0 PICMG 3.0 "Synchronization Clocks"
  - Bussed, long delays, impedance control not so good
  - Use M-LVDS levels.
    - Suggest we stay away from these
- Option 1 Base interface (P23 rows 5 and 6)
  - 4 pairs each from slots 1 and 2 to each blade, star-connected
  - Normally used for Ethernet but could be hijacked
  - Assigned as two Tx and two Rx pairs but this is optional
    - This would be incompatible with a COTS switch, but if we do this only for slot 2, why not?
- Option 2 Fabric interface
  - 8 pairs from each slot to all other slots (full mesh) and from slots 1 and 2 (dual-star)
  - For DAQ it is unlikely we need all 8 pairs Tx/Rx directions are just suggestions...
     Could use e.g. 2 pairs downstream for TTC and clock and 1 upstream for TTS
  - This would leave 5 pairs for DAQ (4 at 10Gb upstream and 1 for handshake)
    - The clock source could be in any slot of a full-mesh shelf
- These are just ideas





- Suggest to use fabric (not base) lanes
- Essentially we can do whatever we want with 8 pairs each to slot 1, 2 (or even another slot)
- If we want to support Ethernet, we need to maintain the Tx/Rx pair assignment in the standard
- Can in principle send 40Gb/s per slot to a hub.
  - In the (near) future this could go to DAQ on 100Gb links
- Could also include front or rear DAQ link in blade
- *Suggestion:* decide fairly soon on a preliminary DAQ interface which works conveniently both over fiber and backplane fabric. We can change later.





- Base interface: Dual star
  - Four pairs
    - → carrying 10/100/1000base-T (!) Ethernet or two 100base-TX ethernet
      Share a sopposed to our microTCA 1000 base-X Ethernet
- Common backplane topology: Dual star
  - Four bidirectional pairs from each blade to each of the hub slots @ 10 (25) Gbps = eight pairs
  - Analogy with CMS microTCA application could suggest
    - → 4 DAQ pairs @ 10 (25) Gbps; blade -> hub
    - → 1 DAQ flow control @ 10 (25) Gbps; hub -> blade
    - → 1 TCDS++; hub -> blade
    - → 1 TTS++; blade -> hub
      - Solution Standard Standard
        Solution Standard
    - → 1 HP clock; hub -> blade

#### Two more talks today touches on the subject



# **TLAS** J23 Connector (zone 2) Node slot



Table 6-5 J23/P23 connector pin assignments for Node Boards/Slots (Base and Fabric Interfaces)

| Row<br># | Interface<br>Designation | J23/P23 Connector Pairs |                   |                   |                   |         |         |         |         |             |
|----------|--------------------------|-------------------------|-------------------|-------------------|-------------------|---------|---------|---------|---------|-------------|
|          |                          | a b                     |                   | c d               |                   | e f     |         | g h     |         |             |
| 1        | Fabric                   | Tx2[2]+                 | Tx2[2]-           | Rx2[2]+           | Rx2[2]-           | Tx3[2]+ | Tx3[2]- | Rx3[2]+ | Rx3[2]- |             |
| 2        | Channel 2                | Tx0[2]+                 | Tx0[2]-           | Rx0[2]+           | Rx0[2]-           | Tx1[2]+ | Tx1[2]- | Rx1[2]+ | Rx1[2]- | ·           |
| 3        | Fabric<br>Channel 1      | Tx2[1]+                 | Tx2[1]-           | Rx2[1]+           | Rx2[1]-           | Tx3[1]+ | Tx3[1]- | Rx3[1]+ | Rx3[1]- | Base        |
| 4        |                          | Tx0[1]+                 | Tx0[1]-           | Rx0[1]+           | Rx0[1]-           | Tx1[1]+ | Tx1[1]- | Rx1[1]+ | Rx1[1]- | <u>Four</u> |
| 5        | Base<br>Channel 1        | BI_DA1+<br>(Tx1+)       | BI_DA1-<br>(Tx1-) | BI_DB1+<br>(Rx1+) | BI_DB1-<br>(Rx1-) | BI_DC1+ | BI_DC1- | BI_DD1+ | BI_DD1- | From        |
| 6        | Base<br>Channel 2        | BI_DA2+<br>(Tx2+)       | BI_DA2-<br>(Tx2-) | BI_DB2+<br>(Rx2+) | BI_DB2-<br>(Rx2-) | BI_DC2+ | BI_DC2- | BI_DD2+ | BI_DD2- | From        |
| 7        | n/a                      | Unused                  | Unused            | Unused            | Unused            | Unused  | Unused  | Unused  | Unused  |             |
| 8        | n/a                      | Unused                  | Unused            | Unused            | Unused            | Unused  | Unused  | Unused  | Unused  |             |
| 9        | n/a                      | Unused                  | Unused            | Unused            | Unused            | Unused  | Unused  | Unused  | Unused  |             |
| 10       | n/a                      | Unused                  | Unused            | Unused            | Unused            | Unused  | Unused  | Unused  | Unused  |             |

interface pairs ea

slot 1

slot 2

NOTE: Color is used in the table above only to clearly indicate Interface groupings.

## **ATCA Front Board and RTM**





WISCONSIN





- Ultra-Fast Trigger Backplane I/O (>10G)
  - Two Zone 2 Issues:
    - 1. The Full Mesh, consisting of multiple stars, is somewhat awkward for  $\eta$ - $\phi$  mapping, which would be better supported by some sort of lattice
    - 2. Uncertain as to how fast the ADFplus connector can be reliably pushed
  - Zone 3 may be the more promising avenue for ultra-fast intra-crate communications
  - PICMG should eventually address the question of 100G Ethernet on the Fabric Interface, but perhaps not soon
  - Nonetheless, Full Mesh Fabrics have more potential than Dual Star Fabric Interfaces, and seem a very worthwhile target for Phase 2 R&D

# Typical ATCA Shelf (aka crate)





ATLAS