xTCA evaluation project status and HPM modules development at CERN

xTCA interest group meeting

CERN EP-ESE-BE collaboration

Vincent Bobillier, Stefan Haas, Markus Joos, Julian Mendez, Sylvain Mico and Francois Vasey
Outline

- Introduction
- MicroTCA evaluation
- CERN MMC
- AdvancedTCA evaluation
- Pigeon Point based IPMC
Outline

- Introduction
 - MicroTCA evaluation
 - CERN MMC
 - AdvancedTCA evaluation
 - Pigeon Point based IPMC
xTCA for LHC experiments at CERN

- Experiments planning to use MTCA & ATCA for upgrades of their back-end electronics
 - MTCA (and ATCA): CMS
 - ATCA: ATLAS

- MTCA and ATCA developments already on-going at CERN and collaborating institutes
 - xTCA Evaluation project
 - Focus effort on infrastructure components (shelves, power supplies, ...)
 - Establish a purchasing framework and provide support
Outline

- Introduction
- MicroTCA evaluation project
 - Introduction
 - Power module
 - Crates
- CERN MMC
- AdvancedTCA evaluation project
- Pigeon Point based IPMC
MicroTCA evaluation project

- MicroTCA evaluation project main goal
 - Specifying MicroTCA infrastructure equipment (shelves and power modules) for use in the LHC experiments
 - Simplifying equipment procurement for CERN users

- Roadmap

<table>
<thead>
<tr>
<th>Technical evaluation</th>
<th>Specifications</th>
<th>Price inquiry</th>
<th>Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
</tr>
</tbody>
</table>

2016: Purchasing framework
MicroTCA power module

- CERN Specifications
 - Output power: 800W
 - Input voltage range: -40V to -60V
 - Payload power:
 - 12V ± 10%
 - 80W per channel
 - Output voltage stability: ±200 mV
 - Maximum output noise and ripple: 100 mV (pk-pk)
 - Management power
 - 3.3V ± 5%

- Selection of the NAT DC840 power module
 - Output power: 840W
 - Compliant (CERN Specs): Yes
 - Pros: Efficiency and IPMI compliance

- Qualification with 3 pre-series units of the NAT power module
MicroTCA power module

- Qualification tests carried out
 - Functionality (MicroTCA compliance)
 - Load regulation (payload power)
 - Line regulation (payload power)
 - Efficiency
 - Ripple and noise

- Outcome

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th>Measured</th>
<th>DC840 Specs</th>
<th>CERN Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power</td>
<td></td>
<td>880W</td>
<td>840W</td>
</tr>
<tr>
<td>Vi=-48V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>-39V to -60V</td>
<td>-40V to -60V</td>
<td>-40V to -60V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>-48V input voltage</td>
<td>> 500mV *1</td>
<td>10% (±600mV)</td>
</tr>
<tr>
<td>Vi=-48V</td>
<td>< 200mV *2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Regulation</td>
<td>multi load values, Vin: -40V to -60V</td>
<td>< 32 mV</td>
<td>Not specified</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Vi = -48V, 40-105% of full power</td>
<td>91.01% (min)</td>
<td>95.5% (min)</td>
</tr>
<tr>
<td>Ripple</td>
<td>Full power, no CU, 50W x 12</td>
<td>< 250mV (pk-pk)</td>
<td>Not specified</td>
</tr>
<tr>
<td>Current sensors accuracy</td>
<td>Channel out current from 1A to 5A</td>
<td>< 312 mA</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

*1: Load variation on all AMCs
*2: Load variation on only 1 AMC
Power module: summary

- Most of the results are within the specification
- Qualification process finished successfully
- Qualification report available on request
- Purchase framework is established
 - https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/Procurement/_layouts/15/start.aspx#/SitePages/Home.aspx
- Few issues being addressed by NAT:
 - Detection of critical temperature (thresholds)
 - Detection of input voltage failure
 - Heat sink
MicroTCA shelves

- Specifications
 - Slots:
 - Up to 12 double width/full-size AMCs
 - 2 MCHs
 - 2 PMs (front) and 4 PMs (rear)
 - 6 RTMs
 - 1 JSM
 - 2 interchangeable backplanes
 - Custom backplane connections
 - MTCA.4 compliant
 - Max. output air temperature 55°C (ambient: 25°C and 80W per slots)
 - Vertically cooled (bottom – top airflow)

- Selection of the Schroff crate
 - Compliant (CERN spec): Yes
 - Pros: cooling homogeneity, mechanical robustness and remote support

- Qualification with 3 pre-series units of the Schroff crate
MicroTCA shelves

- Qualification tests carried out
 - Functionality (FRU info, HPM.1 support)
 - Backplane connections
 - AMC, RTM and PM Slots cooling
 - Power distribution

- Outcome

<table>
<thead>
<tr>
<th></th>
<th>Test Conditions</th>
<th>Measured</th>
<th>CERN Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical aspect</td>
<td>Visual check</td>
<td>Compliant</td>
<td>Custom configuration</td>
</tr>
<tr>
<td>CU functionalities</td>
<td>Operating test</td>
<td>Compliant</td>
<td>Hot swap, HPM.1 support and redundancy</td>
</tr>
<tr>
<td>AMC slot cooling</td>
<td>12 ALBs at 80W CU at full speed</td>
<td>25 deg. C max delta</td>
<td>Air outlet < 55°C for 25°C air inlet</td>
</tr>
<tr>
<td>PM slot cooling</td>
<td>PM at 800W CU at full speed Ambient 26 deg. C</td>
<td>Absolute brick temp. 72 deg C.</td>
<td>Air outlet < 55°C for 25°C air inlet</td>
</tr>
<tr>
<td>RTM slot cooling</td>
<td>6 RTMs at 40W CU at full speed</td>
<td>16 deg. C max delta</td>
<td>Air outlet < 55°C for 25°C air inlet</td>
</tr>
<tr>
<td>Backplane voltage drop</td>
<td>80W / slot</td>
<td>207 mV (max)</td>
<td>< 300 mV</td>
</tr>
</tbody>
</table>

- Qualification report available on request

10/03/2016
MicroTCA crates: summary

- All of the results are within the specification
- Qualification process finished successfully
- Purchase framework is established in 2016
 - https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/Procurement/_layouts/15/start.aspx#/SitePages/Home.aspx

- Few issues being addressed by Schroff:
 - Separated management of front and rear cooling
 - Slot identification

- Lane quality measurements (VNA) are currently being carried out
 - Compliant with 10Gbe standard

- Recommendations to user:
 - Power module redundancy to be used with care
 - Limitation of the power module to 600W
Outline

- Introduction
- MicroTCA evaluation project
 - CERN MMC
 - Introduction
 - Development roadmap
 - New architecture
 - AMC specific customization (user code)
 - Summary
- AdvancedTCA evaluation project
- Pigeon Point based IPMC
CERN MMC: Introduction

- CERN MMC source code was inherited from DESY / CPPM

MMC Role
- Activating / De-activating an AMC card
- Providing information about the AMC card
 - Maximum current
 - Ports configuration
 - Clock configuration
- Sending alert events (sensor exceed threshold)
- Executing IPMI commands

Features
- Power management
- Sensor monitoring
- Clock and ports management (E-Keying)
- Debug terminal (USB)
- FAT32 filesystem (SD Card)
CERN MMC: Development roadmap

2011-2015: MMC V.1.0
- Basic version
- Support of the Atmega128 microcontroller
- User customization difficult
- E-keying not supported

2015: MMC V.2.0
- Almost all the code was re-written
- Simplified user customization
- Improved standard compliance
- Supported port and clock e-keying feature
- Supported HPM.1 remote upgrade standard

2015-2016: MMC V.3.0
- New source code architecture
- Support of 3 different microcontrollers
CERN MMC: new architecture

HPM
- Application
 - Application source code (.h, .c)
- Drivers
 - uC drivers source code (.h, .c) ← driver.h: Low level interface
- User
 - Configuration file (.h)
- uC project

MMC
- Application
 - Application source code (.h, .c)
- Drivers
 - uC drivers source code (.h, .c) ← driver.h: Low level interface
- User
 - User_code
 - Sensors
- uC_MMC project
CERN MMC: AMC specific customization (user code)

- General configuration
- FRU Information
- Power sequences
- AMC port and clock e-keying
- User LEDs
- User geographical address (specific for benchtop use)
- Sensors

```c
#define LM82
{
    sensor_number: TEMPERATURE_SENSOR1,
    init_time: MP_PRESENT,
    name: "LM82-IC1",
    i2c_addr: 0x2A,
    p1: POINT(0,0),
    p2: POINT(1,1),
    upper_non_rec: 85,
    upper_critical: 75,
    upper_non_critical: 70,
    lower_non_critical: 10,
    lower_critical: 5,
    lower_non_rec: 0
}
```
CERN MMC: Summary

- New architecture
 - Source code divided in 3 parts: application, drivers and user
 - Standardized sensor interface (drivers)

- Almost all Polaris Tester automatic test passed (standard compliance tester)
 - 26 passed
 - 2 failed (MCH related: p2p connectivity and set blue led command)

- External tools:
 - MTCA C library (including FRU writer and event reader examples)
 - HPM.1 tool (including programing feature)
 - Sensor driver generator

- Used with many AMC cards
 - CERN projects:
 - CMS: TwinMux (Atmega128), MP7/FC7 (AT32UC3A3256), MTF7 (AT32UC3A1512)
 - ATLAS: Liquid Argon (Atmega128)
 - External projects:
 - IN2P3: Nebula, Sirocco, Stereo acquisition system, EX2, Gamahadron

- The CERN MMC source code is based on the GNU-GPL licence
 - https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/MMC_project/default.aspx (Web page)
Outline

- Introduction
- MicroTCA at CERN
- CERN MMC
- AdvancedTCA evaluation project
 - Shelves cooling
- Pigeon Point based IPMC
AdvancedTCA: Shelves cooling

- **Goals:**
 - Common specifications for shelves
 - Assess the possibility to re-use existing racks system or specify rack infrastructure for horizontally cooled crates

- **AdvancedTCA shelves cooling simulation (CERN rack):**
 - Simulation have been performed
 - Rack improvement had been proposed
 - Report available on request

- **AdvancedTCA shelves cooling measurements (CERN rack):**
 - Detailed by Claudio Bortolin
 - ATLAS ATCA cooling evaluation project
Outline

- Introduction
- MicroTCA at CERN
- CERN MMC
- AdvancedTCA evaluation project
- Pigeon Point based IPMC
CERN IPMC: Introduction

- Based on the Pigeon Point solution
- Licence: EP-ESE-BE (xTCA Evaluation Project)
 - Licence for use at CERN
 - Software and Hardware documentation
 - Starter kit
 - User guide
CERN IPMC: Evaluation of the Pigeon Point solution

- Pigeon solution was evaluated using the starter kit IPMC mezzanine card
- Adapter card (CERN) was used to evaluate the solution with existing ATCA blade
CERN IPMC

- **Status:**
 - Evaluation of the Pigeon Point solution
 - Study of the design feasibility of a mezzanine
 - Design of the CERN IPMC mezzanine

- **Roadmap (2016):**
 - Prototype production (ongoing)
 - Debug of the CERN IPMC mezzanine
 - Creation of a user space into the source code
 - Goal: Make the mezzanine available to CERN users/developers
Summary

- **MicroTCA:**
 - Evaluation of commercial modules finished
 - Specifications written
 - Qualification almost finished
 - Purchase framework is established

- **AdvancedTCA:**
 - Evaluation is almost finished
 - Writing specification has just started

- **MMC:**
 - New release is available on SVN

- **IPMC:**
 - Prototype will be debugged and used as a demonstrator
Thank you

julian.mendez@cern.ch