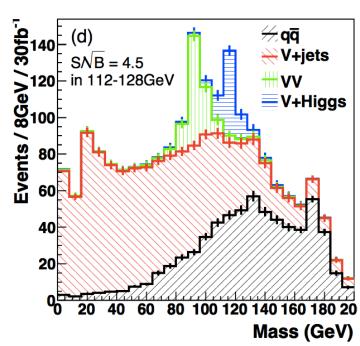


Boosted Higgs \rightarrow bb in association with a vector boson, at 14 TeV

Jon Butterworth Granada, 12/4/2016

Jon Butterworth, Inês Ochoa, Tim Scanlon arXiv:1506.04973, in EPJC


Some History

 BDRS "Jet substructure as a new Higgs search channel at the LHC"

arXiv:0802.2470

- "Rescued" VH, H→bb for light Higgs boson
 - main search channel at Tevatron, not deemed feasible in e.g. ATLAS physics TDR
- Yet substructure not used in
 Run I searches in this channel
- What happened? Why?
- How will it change in Run 2?

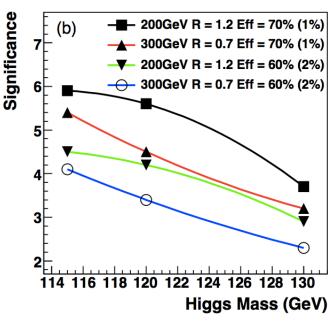
What was promised

Several factors led to the improvement:

– BOOST!

- Reduced combinatorial backgrounds
- Include $Z \rightarrow vv$ channel
- Beat down top background for W $\rightarrow \nu \mu$, Z $\rightarrow \nu \nu$ channel (b-jets on opposite sides)

Jet substructure


 Recover merged jets, IR safe (remember, were still using legacy cone algorithms in 2007)

What happened

- Higgs was 'medium'...
- Anti-k_T was born, and is very good
- The LHC ran at lower energy
 - Lower cross section, especially at high $p_{\scriptscriptstyle T}$
 - Lower fractional tt background
- Boost still worked!

Further categorisation is performed according to the transverse momentum of the vector boson, p_T^V , to take advantage of the better signal-to-background ratio at high p_T^V . The

(e.g from ATLAS paper, arXiv:1409.6212)

 Substructure was tried but wasn't needed

Substructure shadow analysis • [[]

- 'Shadow analysis' performed by Inês Ochoa
 - while working on published ATLAS Run 1 result
 - See CERN-THESIS-2015-029 22/01/2015 (UCL)

Table 6.2.: Values of S/B and S/\sqrt{B} for the best performing substructure methods. A mass window of 110-140 GeV is considered.

Method	S/\sqrt{B}	S/B (%)
Resolved (two anti- k_t $R = 0.4$ jets)	0.56	10.57
Cambridge/Aachen splitting and filtering, $R=1.2$	0.48	12.54
anti- $k_t R = 1.0$ pruned ($z_{cut} = 0.15, R_{cut} = 0.4$)	0.43	13.27
anti- $k_t R = 1.0 \text{ trimmed } (f_{cut} = 0.05, R_{sub} = 0.3)$	0.46	14.80
anti- $k_t R = 1.0 \text{ trimmed } (f_{cut} = 0.05, R_{sub} = 0.2)$	0.42	15.22
anti- k_t $R=1.5$ trimmed ($f_{cut}=0.03,$ $R_{sub}=0.3$), $\tau_{21}<0.4$	0.52	12.11

What about Run 2?

- Higher beam energies, but...
 - Higgs is still 125 GeV
 - Anti-k_T is still good
 - Top background gets worse
 - Let's see.
- Study WH as the (most challenging) example, at p_T(V)>200 GeV
- Compare two example techniques:
 - 'Standard' ATLAS resolved approach, Anti-k_™ R=0.4
 - 'Standard' BDRS approach C/A R=1.2
 - Yes, there are other, probably better, options available, but a major goal was to benchmark against pre-data situation and Run 1 results

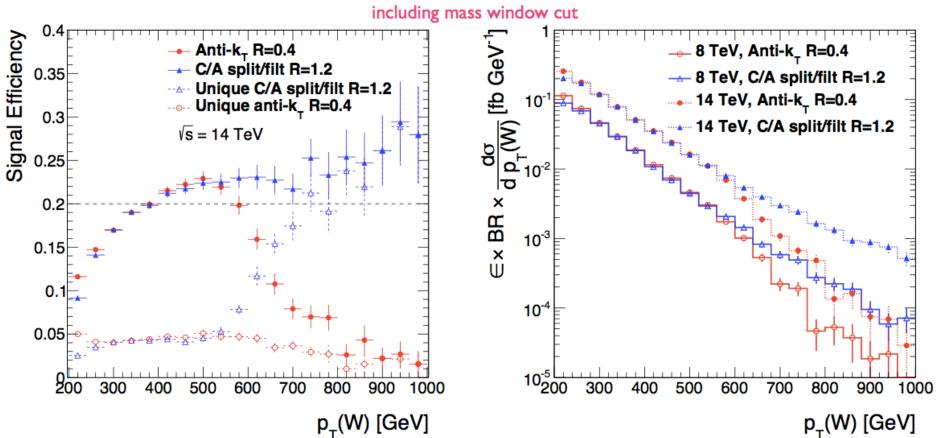
Event generation

- 14 TeV
- Background processes considered:
 - W+bb, top-pair production,WZ, single-top Wt
 - for Wt, Diagram Removal scheme is used to handle interference with ttbar (thanks to Rikkert Frederix)
- aMC@NLO used to generate both signal and background matrix elements
 - NLO corrections in QCD
 - matched with Herwig++
 - MadSpin to simulate the decays of the top, W and H (except for Wt)
 - considering only muon-channel for the W leptonic decays
- No pile-up
- UE and hadronisation handled by Herwig++
- Particle-level study

Event generation

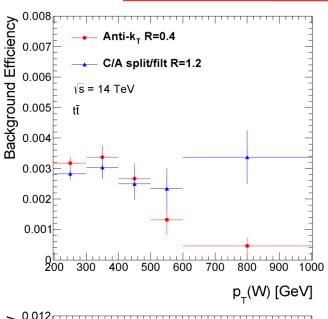
- Flavour labelling
- geometrical matching of jets/subjets to B-hadrons with pT > 5 GeV
- if a jet/subjet is not matched, an additional check is performed for C-hadrons
- if both fail, jet/subjet is labelled as light
- All yields corrected by b-tagging efficiencies:
- working points: 75%/15%/1% for B/C/light jets
- Other normalisation corrections:
 - top-pair: scaled by 1.25 to include NNLO corrections in QCD
 - W+bb: scaled by 1.2 to take into account W+cc contribution (estimated from EPS'13 ATLAS results)

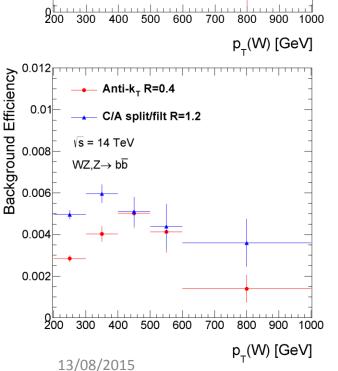
Event Selection

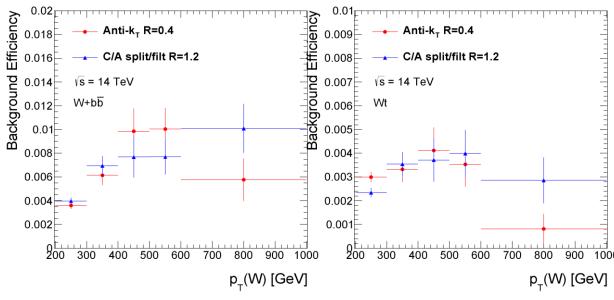


- W candidate
 - muon with $p_T > 20$ GeV and $|\eta| < 3.0$,
 - Neutrino with $p_T > 20$ GeV, $p_T(W) > 200$ GeV
- "Resolved"approach:
 - at least two anti- k_T R=0.4 jets with pT > 20 GeV and $|\eta|$ < 3.0
 - ΔR<1.4 between two leading jets, both matched to a Bhadron
- "Substructure"approach:
 - at least one C/A R=1.2 split/filtered jet, pT > 180 GeV and $|\eta|$ < 3.0
 - two leading subjets matched to a B-hadron
- Mass window:
 - dijet/filtered jet invariant mass within 110 and 130 GeV
- No jet veto is applied (yet)

Signal Efficiency




- Contribution from unique substructure events (μ channel, lumi=150 fb⁻¹)
 - ~30 events in p_T(W) > 200 GeV (with ~120 in resolved case) → ~20%
 - ~3 events in p_T(W) > 600 GeV (with ~1 in resolved case) → ~70%
- Searches & measurements in regions w $p_T(W) > ^500$ GeV require substructure methods (or smaller-R jets)

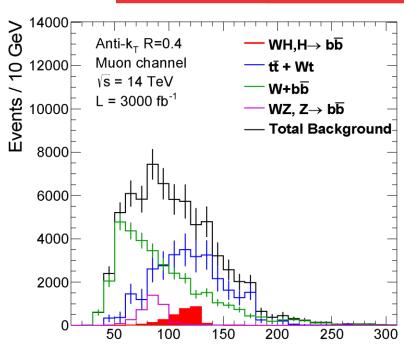


Background 'efficiency'

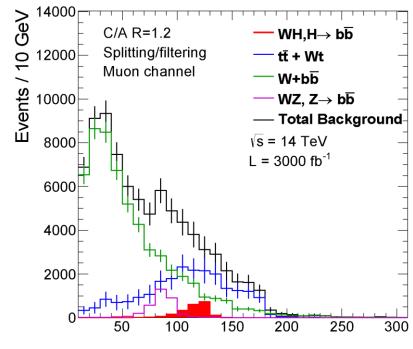
- Generally similar features to signal
 - Resolved approach kills both signal and background at high p_T
- Exceptions
 - Wbb, continual feed-in from wide-angle bb pairs (not a real boosted object!)
 - W/Z Z→ bb Substructure lets more in at lower p_T (Z mass is lower, more boost)

Jet Veto

- Jet veto is applied in order to suppress backgrounds (mainly tt)
 - Not the main point of this analysis, clearly would be optimised differently in a real analysis
 - Challenging cut: pile-up effects, theoretical uncertainties
 - same veto definition for both approaches, for comparison (*)


Definition:

- Events with more than 3 anti- k_T jets with $p_T > 20$ GeV and $|\eta| < 5.0$ are rejected
- The third jet, if present, is either low p_T (<10% p_T (W)) or forward ($|\eta|>3.0$)
- Rejects 30-40% of signal events in Higgs mass window in resolved & substructure selections, respectively
- Rejects over 90% of ttbar events in both cases
- Rejects 30% of W+bb events in resolved case, 50% in substructure case



Invariant-mass distributions

> 200

- NB muon channel only. Integrated lumi 3000 fb^{-1.}
- Table also has mass window applied (110-130 GeV)

m _H [GeV]	2505	Resolved			m _H [GeV]	
$p_T(W)$ [GeV]	Signal	$W+bar{b}$	$tar{t}$	Wt	WZ	Total Background
200 - 400	1405	2987	5024	1165	77	9253
400 - 600	208	541	361	112	15	1029
> 600	19	89	10	0	1	100
> 200	1632	3617	5395	1277	93	10382
		Su	bstruct	ure		
$p_T(W)$ [GeV]	Signal	$W+bar{b}$	$tar{t}$	Wt	WZ	Total Background
200 - 400	1115	2069	2718	865	68	5720
400 - 600	184	278	505	67	9	859
> 600	54	184	148	13	3	348

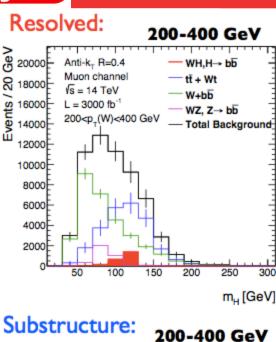
3371

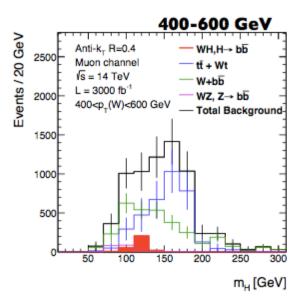
945

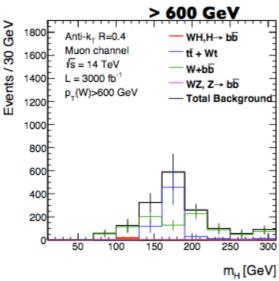
80

6927

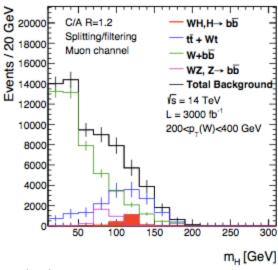
2531

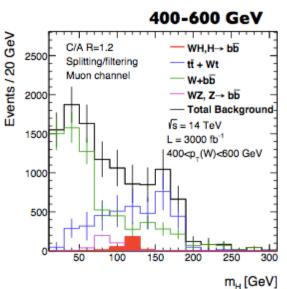

1353

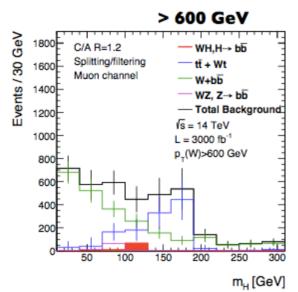

13/08/2015



....in bins of W p_{τ}







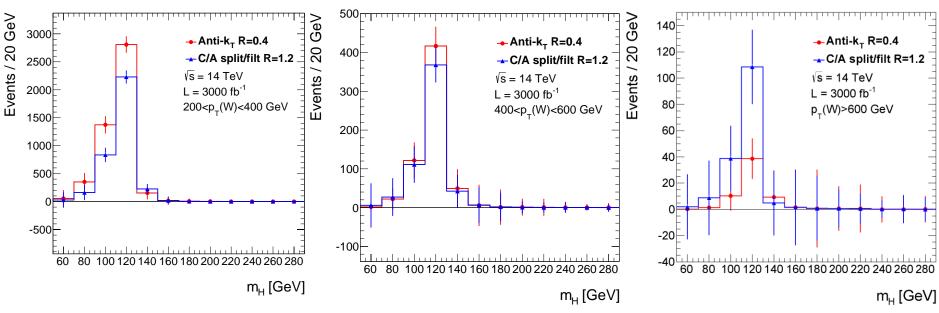
Background Composition

	R	Resolved			
Flavour (%)	Signal	$W+bar{b}$	$t \bar t$	Wt	WZ
bb	99.9	93.1	32.8	7.2	94.5
bc	0.1	4.0	55.8	78.2	3.4
bl	0.0	2.9	11.5	14.6	2.1
	Sub	structure			
Flavour (%)	Signal	$W+b\bar{b}$	$t \bar t$	Wt	WZ
bb	99.8	94.2	20.1	6.1	95.2
bc	0.2	3.2	63.7	78.9	2.9
bl	0.1	2.6	16.2	15.0	1.9

- Top is mostly bc, as expected: contribution increases with p_τ(W)
 - improved charm rejection is essential to suppress largest background
- bb is the subleading contribution in top events:
 - However, at high boosts, tt+HF events are responsible for ~70% of the bb events that are selected by the substructure approach, which could be problematic, given the large theoretical uncertainties

Sig/Backgd & significance

Have now
doubled cross
section to account
for electron
channel
(assuming similar
efficiencies)


S/B(%)				_
$p_T(W)$ [GeV]	Resolved	Substructure	Unique Substructure	events that are
200 - 400	15.2	19.5	8.7	uniquely reconstructed by
400 - 600	20.3	21.5	6.0	the substructure
> 600	19.2	15.6	13.9	approach
> 200	16.0	19.9	9.1	
	S/\sqrt{B} , $L =$	$3000(150) \text{ fb}^{-1}$		-
$p_T(W)$ [GeV]	Resolved	Substructure	Unique Substructure	
200 - 400	20.6 (4.6)	20.8 (4.7)	4.7 (1.1)	
400 - 600	9.2 (2.1)	8.9 (2.0)	1.6 (0.4)	
> 600	2.7(0.6)	4.1 (0.9) +509	% 3.4 (0.8)+60	0% if combined with resolved
> 200	22.7 (5.1)	23.0 (5.1)	5.9 (1.3)	-

- Signal significance peaks in $p_T(W)$ region of 200-400GeV, where both approaches work well
- Such boosts are enough to reduce combinatorial and top backgrounds
 - the significance then drops for higher $p_T(W)$
- Substructure case: higher S/B plus control region for W+bb could be promising

Expectations for HL-LHC?

Notes:

- Addition of ZH channels, as well as further optimization of event selection, should improve statistical sensitivity, assuming good control of systematic uncertainties can also be achieved.
- Systematic uncertainties not included

Conclusions

- Update of boosted WH,H→bb study at 14TeV, using 'vanilla' BDRS & resolved methods
- Most sensitive region remains p_T(W)=200 400GeV, even after increased beam energy
 - Main benefit of 'boost' already seen by this p_T. Higher boosts simply reduce cross sections.
- Both methods perform well in this region
 - Substructure improvement less dramatic given slightly heavier Higgs (BDRS was best for a 115 GeV boson)
- Combination of methods worth exploring, (some complementary information), or the equivalent in more recently developed approaches for Run 2 (see previous talks)
- Searches or measurements focusing on $p_T(W) > 500$ GeV region require substructure techniques
- Top background mainly from mis-tagged charm jets
 - b-tagging techniques remains a central issue
- But don't forget W+bb...