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Basics of eikonal approximation: QED

+ Charged particle emits soft photon
»  Propagator: expand numerator & denominator in soft momentum, keep lowest order

»  Vertex: expand in soft momentum, keep lowest order
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Basics of eikonal approximation in QED
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Independent, uncorrelated emissions, Poisson process



Kikonal approximation: no dependence on emitter spin

+  Emitter spin becomes irrelevant in eikonal approximation

»  Fermion

(p+K)

+k ’ gy
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»  Approximate, and use Dirac equation  pu(p) =0

»  Result same as scalar case
pH
g (M u(p)) x =
»  Two things have happened

v No sign of emitter spin anymore

v Coupling of photon proportional to p*



Kikonal exponentiation

In the eikonal approximation, interesting patterns emerge
One loop vertex correction, in eikonal approximation
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Two loop vertex correction, in eikonal approximation
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Exponential series!
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Yennie, Frautschi, Suura




Exponentation using path integrals

EL, Stavenga, White
Textbook result

Sum of all diagrams = exp (Connected diagrams> f = ot dt(%d;2+p.A+..)

Can write scattering amplitude as nested path integral

M(p1,p2,{k}) = /DAS Dz(t) Hlz] f1[As, 2(t)] f2[As, z(8)] e°14s]
x(t): path of charged

Eikonal vertices: sources for gauge bosons living on lines particle
Disconnected Connected



Path integral method, non-abelian

o O B B

+ Not immediately obvious how this could work (the path integral must be an actual
exponential), since

»  Source terms have non-abelian charges, so don't commute

EL, Stavenga, White

»  External line factors are path-ordered exponentials

»  Nevertheless B s Gatheral; Frenkel, Taylor; Sterman

ZFDCD —cxD ZC_’zwz
D

Modified color Webs
factors

+ Proof uses replica trick from statistical physics
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More than eikonal: resummation for quark form factor

+ Consider all corrections to the quark form factor

J

S 0, T RPN ¢

» a diagrammatic analysis shows that it factorizes into a product of functions:

v Asoft function “S” (only IR/eikonal modes of loop momenta)
v 2 jets functions “J” (collinear modes)
v Ahard functions “H” (off-shell, hard modes)

+ These are also all the virtual diagrams for the Drell-Yan process

+ This factorization also implies a resummation

A. Sen; Collins; Magnea, Sterman



Factorization and resummation for Drell-Yan

U(N) = A(Nv s gl)A(N7 s 52)S(N7 s gl) fQ)H(:u)

+ Now with Mellin moment “N” dependence (i.e., with radiation)

+ Near threshold, cross section is equivalent to product of 4 well-defined functions

+ Demand independence of
»  renormalization scale y

» gauge dependence parameter ¢

v find exponent of double logarithm

d d d
0= - 0(N) = & g-0(N) = Ga o)

du [ de
A = ex L
ep[/ v § |

Contopanagos, EL, Sterman
Forte, Ridolfi



Factorization and threshold resummation

+ Ai(N): initial state soft+collinear radiation effects

»realtvitual  o(N) = ¢i(N)g; (V) x [Ai(N)Aj(N)SiJ(N) Hij]

> (]sn|n2n N 6 (N)
+ Sj(N): soft, non-collinear radiation effects
4 Gsnlnn N

+ H: hard function, no soft and collinear effects
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Solft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart,...

+ Previous “(d)QCD” analysis was diagram based Becher. Neubert

+ Effective field theory approach: SCET

»  Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons

1
i - De

. 1 T
ZEC,L>%§TL = ZTT{G,LU/G 2 }

LscrT,gq =Enlin- D+, | 5

v Powerful power counting. Using +,-,T notation
pr~Q(1,1,1) pe~QA1,VA) ps~ QA AN

v Flelds scale similarly:
gnNA ‘SﬁN)\2 ASN)\ ﬁ'AcNAO

+ Resummation via renormalization group

Hl



Generic large x behavior

For DY, DIS, Higgs, singular behavior when x— 1

In*(1 — x)
l1—=z

6(1 — x) [ ] el )
-

»  singularity structure for plus distributions is organizable to all orders, perhaps also for
divergent logarithms?

In" (V)
N

After Mellin transform  Constants ~ In*(V)

We know a lot about logs and constants, very little about 1/N
Can we learn about such “next-to-eikonal/soft” corrections?
“Zurich” method of regions allows computation (for NNNLO Higgs production)

(1 —2x)?In?(1 — x)

2= A - :
v/ at |e a St to p_37 nasthasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger
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In(N)/N terms

+ (Can be numerically important
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Kraemer, EL, Spira

Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander

Moch,Vogt
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+ We know that the leading series Ini(N)/N exponentiates

>

by replacing in resummation formula

ke 2

o=t

|
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Extended Drell-Yan threshold resummation

EL, Magnea, Stavenga  Gruenberg

Ansatz: modified resummed expression Ball, Bonvini, Forte, Marzani, Ridolf

- [U(N)} 0 /01 dz 2V 1 {11zD [as ((1 o 2)2Q2>]

2
(1-2)*Q%*/z 4,2
-|—2/ q T [z,ozs(qz)}}

) 2

e
<

1—z2

where B = A® 4 M In(1 — 2) + DI

(We constructed a similar expression for DIS). Structure:

oy | e
U(N)=;)(92) [mz:oanmlnmNJrﬂ;bnmN SO
C}%’ CACF TLfCF
bos 4 4 0 0 0 0
e i L = L
bot | 86 € 2 84“2%—11 ) —g2 oo =
ey e e TG e ey

Close, but no cigar..
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Classic result: LLow’s theorem

»  So far we only looked at emissions from external lines. At next-to-eikonal/soft order, also 1
“Internal” emission contributes

gofioSed

Low’s theorem (scalars, generallzatlon to spinors by Burnett- KroII {o massless particles
by Del Duca — LBKD theorem)

v Work to order k, and use Ward identity

T _ [(2p1—/€)“+(2p2+k)“]F+[pﬁ‘(k-pz—k-p1)+p’2”(k-p1—k-pz) oT
—2p; - k 2ps - k p1-k p2 -k Op1 - P2

Non-emitting amplitude determines the emission to NE accuracy,
- with its derivative

- but no detailed knowledge of internals needed

15



Next-to-eikonal exponentiation via path integral

; : : : , EL, Magnea, Stavenga, White
+  Wilson lines are classical solutions of path integral

+ Fluctuations around classical path are NE corrections \tw\’\w

: : : {
»  All NE corrections from external lines exponentiate 5 b tw
»  Keep track via scaling variable A p* = \n*
= S2%0 0
f(oo)z/ Dz exp [z/ dt (%QEQ—I—(TL—I—:i:)-A(xi-i—nt—I—x) [P ts
. 200 ’ = it
—I—%@-A(:vfﬁ—pft%—x))] T
Use |-D field theory propagator
([@(t)a(t)) = G(t,¢)) = 5 mint,t)
NE Feynman rules
LH i nHv _lupvp k4 kVptp -

k
2p -k 2(p - k)? p-(k+1) p-(k+U)p kp-l



Low-Burnett-Kroll and path integral

Path integral method provides elegant way to derive Low’s theorem

SE1s-,Pn) = [ DAH(1,. .05 A)e™% a1, 13 As) .. €755 (o, pr; Ag)eiTA

Gauge transformation must cancel between f’s and H

f(@s,p5; A) — flzi,pp; A+ ON) = e ") £z, pes A)

Opposite transformation in H, expand to first order in A and A

Low contribution is then:
o= /DA

il e i) oty

/(;Zi];d i:Qj( i i ’ - >H(p1"“vpn)Au(k)

nj -k 0pj, Opj,

First term is due to displacement of f(x,p,A)

Missing: careful treatment of collinear radiation. Back to basics

87



Next-to-eikonal corrections

+ Keep 1 term more in k expansion beyond eikonal approximation

| 2p* + kH 2pH i kH 12
scalar : =
2p - k + k2 2p-k  2p-k (2p - k)?

ke \
Y [2p-k+2p-k (2p - k)2

fermion :

»  Now emitter-spin dependent, and has recoill

»  Decorrelation not obvious

»  Can we still make systematic statements (exponentiation, factorization) about next-to-
eikonal/soft corrections?

18



+

4

Next-to-eikonal diagTammar

As for eikonal case earlier

)

>

Identify next-to-eikonal vertices

show that they “decorrelate’
v as eikonal webs (2 eik. line irreducible), but now with g

new vertices ©

v they become spin-sensitive

New 2-gluon correlations between eikonal webs —
NE webs

18



Exponentation for NE corrections

+ Upshot: one can define NE webs, using such NE Feynman rules.

Z C(D)F(D) = exp [C(D)WE(D) o CI(D)WNE(D)]

+ They exponentiate too, no new proof needed

»  but they are not the only source of next-to-soft corrections

20



Next-to-eikonal logarithms

Vernazza, Bonocore, EL, Magnea, Melville, White

+ Our approach: understand NE corrections at amplitude level, then construct cross section
+ Use Drell-Yan as testbed

+ (oal: combine NE matrix elements with phase space to predict NE (=NLP) logs for NNLO Drell-
Yan

» Leading power done
ol

»  Next-to-leading powers? |
log - =) 1 —2 1.0

v They come from double real emission, and one-real + one-virtual

2



NElogs in DY: double real

+ Check NE Feynman rules for NNLO Drell-Yan double real emission (only Cg* terms)

» Result at NE level (agrees with equivalent exact result)

5 g P ) 128 128
K(z) = (ECF) [—6—3 Do(2) + —5 Dilz) — —5 log(1 — 2) = [logi(l - z)]
256 256 320 = e
= e e +
€ € <
1024 1024
+ 222 Dy(2) — - log*(1 — 2) + 640l0g2(1 - 2) |,

3 3
»  Special vertex (2-gluon correlation)

p-k2)ptkY 4+ (p- k1)kyp” — (p-k1)(p - k2)g"” — (k1 - ko)p"p”

R b= = TRCETY

v gives zero after azimuthal integration - o
22



NE logs in Drell-Yan: one real - one virtual

+ For the complete set of subleading NE logarithms, we must also consider also
1-real plus 1-virtual contributions

RS S
PP PO

»  More subtle, virtual momenta are not always (next-to)-soft. We follow two approaches:

method of regions

factorization

2



| Real plus1 Virtual

+ We redid exact calculation, keeping only Cr? terms
» only the full result was known in the literature

»  result, up to constants (dropped higher powers of 1-z)

K(l) = 32Dy — 32 —64D1 + 48Dy +64L1 — 96 64Dy — 96D + 128Dy — 196 — 64L% + 20814
1 o | Vo €3 i €2 o+ €
128 128 4 2
— —D5 +96D; — 256D + 256D + ——Li — 232L] + 412L, — 408, (4.12)

> logifli=)
e - Ly =log(1l — 2)

» bare results, no renormalization or factorization counterterms

»  Can we reproduce (some of) this using method of regions?

24



Method of regions approach

Bonocore, EL, Magnea, Melville, Vernazza, White

+ Method of region approach, extended to next power
»  Should allow treatment of (next-to-)soft and (next-to-)collinear on equal footing
4 HOW does |t Work? Beneke, Smirnov; Jantzen

»  Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by
appropiate scaling

p il
Howls 0 B0 1) - Soft b EDE Aoy ko
Collinear :  ky ~ V& (1, A, )\2) . Anticollinear : k& ~ V§ ()\2, e 1) : k

p & 2

» expand integrand in A, to leading and next-to-leading order
»  but then integrate over all k1 anyway

»  Treat emitted momentum as soft and incoming momenta as hard

Ky =02 0 ) pt = 3y/snf Pt = 2/snt

25



MoR: collinear region

+ Soft emission from triangle graphs:

»  Result

47

k =y
2 P 2
kl
q
E P
c)

(

(d)

€2 €

o e T
Kl(\IQE))’,c+g:(a F)[ + —log(1 — z) — 36log”(1 — 2) + 16

+ Soft emission from self-energy diagrams

(

2 p K 2] p k, =
kq ki
7 q
% p = p
f)

(9) (h)

20 24

Ll o) e — el = — el —
€

€
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Collinear(+anti-collinear) region

+ Note
»  Only NLP logarithms (intermediate LP logs cancel)

»  Terms after loop integral contain

20 L (2D ko)
€ ; €

»  When integrated over ko, give the right log(1-z) terms, so
- expand in € before expanding in k!

- illustrates again breakdown of original LBK theorem

27



Method of regions results

+ Onefinds
»  Hard region (expansion in A?)
v reproduces already all plus-distributions, and some NLP logarithms
»  Soft region (expansion in A?)
v all integrals are scale-less, hence all zero in dimensional regularization
»  (anti-)collinear regions (expansion in A)
v only give NLP logarithms, once all diagrams in set are summed
+ Nice:
»  the full K"4,1vis reproduced, including constants — 4 powers of NLP logs

+ MoR gives diagnostic of next-to-soft power logs, but doesn’t give predictive power
+ For this, we need a factorization approach

25



Next-to-soft in SCE'T

+ Early SCET results beyond leading power in heavy-to-light currents
» need for multi-pole expansions for appropiate scaling  Beneke, Diehl, Feldmann; Chapovsky
» application underway for Drell-Yan current operator

+ Analysis of LBKD theorem at one-loop level in SCET

» general approach, has collinear splitting and collinear fusion terms
Larkoski, Neill, Stewart

collinear
fusion

2



A factorization approach to next-to-soft

Bonocore, EL, Magnea, Melville, Vernaza, White

+ Can we predict the log(1-z) logarithms? i

»  For both we need to factorize the cross section, as we did earlier

v H contains both the hard and the soft function (non-collinear factors)

o>
oo

+ Next, add one extra soft emission, as in Low's theorem. Let every blob radiate!

v J:Incoming jet functions

v Can we compute each new “blob + radiation?”, and put it together?
Del Duca, 1991

30



(Next-to-)Soft currents

+ Eikonal/soft approximation for gauge theories and gravity long known White
Ana((pi),B) = SO An(fp), s =3 BB
=
e s A 5 zn: EW;@ pr : Weinberg’s soft theorem
=
+ (Generalization to next-to-eikonal/soft
S — En: Eu(k])?l:i(ww g Zzn; Guu(k)]if.kgj(i)p”

gl

v Very generally true for soft spin 0,1/2,1,2 emissions, abelian and non-abelian
- Includes emissions from inside hard function

v Coupling to full Lorentz generator (where spin part is included, e.g. for fermions)
- Much recent work Bern, Davies, Di Vecchia, Nohle

: Broedel, Plefka, de Leeuw, Rosso
- Breaking at loop level

31



A factorization approach

+  Work at amplitude level, again only Cr? terms

»  Later: contract with c.c. amplitude and integrate over phase space

%
Ay (k) = AL (k) + AH (k) @m

o
Ir)

+ Emission can occur from either H or J's

)

A

»  For emission from jet function, define

J,LL (p7 n, kQ) u(p) i <O ‘/ ddye_i(p—kb)-yq)n(ya Oo)w(y)],u(()

v ‘radiative jet function”, universal

52



Ward identity

D /j@m
+ For emission from H, use Ward identity %y Ty
kA, =0 B )DW
= o

»  Where for the radiative jet function there is the simple WI
B Le gl ) 0 —r |

»  Then hard function emission is just derivative
p’L? ZQZ (8 ,u pl7pjanj )HJpjanj

+ Split polarization sum of emitted gluon/photon using “K” and “G” projectors

oD -

L1
2p - k — k2

0P e

»  Useful: K is leading, G gives subleading terms

55



Factorization approach: main formula

+ Upshot: a factorization formula for the emission amplitude (Cr? terms) pel Duca, 1991

2
(2]9Z —k)’u U 8
D . Z —
A (pj7k) Z_Zl [% (2]% Ty ‘i‘Gz apz,/ A(pzapj>

= ” 0
) S e (Ju(piakani) ~ % g J(pi,ni)) HJ(pj,nj)]
i j#i

+ Remarks

»  for logs: to be contracted with cc amplitude :
» only process dependent terms are H and A gﬁ

» Jyis important, need it at loop level

34



LBKD theorem, simplified

+ For the non-radiative jet we would need to compute
~ T Td v

» double line is Wilson line in n¥ direction

+ We choose n" = p¥ so n? = 0. In dimensional regularization we have then
»  Yields simple expression for emission amplitude

2p; — k) =2 ie0) -
e = (qz' (p?, ) + 4 quua—py +G7;“Jv(l?z'ak)) A(ps; ;)

»  Alis known, so need
- factorized (external) contributions
- derivative contribution

- Jy contribution

18



External contribution

+ Fairly straightforward Kg§g<z):(j_;cF)z{i_i[po(z)_1]+§2[_8pl<z>+6po<z>+8uz>_14]

+ 15_6 [4D2(z) — 6D1(2) +8Do(2) — 4L7(2) + 14L(2) — 14]

12
= TSDE,,(,Z) 96D, (2)— 256D () - 256D0(2)

+ %L?’(z) — 22417 (2) + 448L(2) — 512} : (5.62)

» Reproduces all LP logs (plus-distributions)

»  Agrees with factorization of eikonal radiation, and NE Feynman rules

36



Derivative contribution

+ Not through effective Feynman rules, but still not too hard

K3 (z) = (Z‘—W CF)2 {?&f - 18—6 | — 4L(2) + 3| + 64L2(2) - 96L(2) + 128} .

»  NLP terms only

»  Sum of external and derivative contributions corresponds precisely to MoR hard region
contribution

57



Radiative jet function contribution

+ Formal definition
o <o \ [ dtye 98, (4, 00)0(0)10) \ p>

+ Diagrams:

CUO/C

ks ( o -
i % - I Oaz\) % B

200000¢ L0000

k1 n

(@) (b) ©) o
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4

Radiative jet function contribution

Find

% 9 ok D% nY S B
v(l) e 29 - e{ AR P — —(1+2 =
IO ki) = @k [(2+a4se) (S - ) —ae2g e

+(1_%—3e> 2 +(1+3e)<ﬁ— Dt )}+

€ p-k D kD

Occurs with G-tensor: filters spin-dependent part. At lowest order JV0):

One-loop terms breaks next-to-soft theorem. Interestingly it is an eigenstate of G

GVH <_ T ) e

+
ok My, 4p - ko

G e

Find after phase space (k2) integral (chosing n=p)

>

G 6 48
Kgc)u = (Q F) [ = el e el =2 = e )

4 €2 € <

Precise correspondence with collinear region
59




From amplitudes to logarithms

+ Now put it all together, contract with cc amplitude and integrate over phase space
do = d®31p (PLp + Pnrp) + dPs NpPLp

+ Find also here perfect agreement with exact NLP result (and of course MoR result),
for 4 powers of logarithms
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Next steps

+ Recent
» January 2016 workshop at Higgs Centre, Edinburgh
+ First on deck

» non-abelian terms (DY, Higgs..)
- new regions, also captured by radiative function
»  Resummation
- Effective field theory operators (many!) known, now compute anomalous dimensions

- Using next-to-eikonal webs for exponential form

41



Summary

+ Next-to-soft corrections
» approach through NLP terms in SCET
»  here: factorization approach

+ Obey extended non-abelian exponentiation (new webs)

+ Governed by LBKD theorem; collinear loop momenta key
» understood through method of regions
»  established predictive power through factorized expression

v clear correspondence to MoR terms

+ Expect non-abelian extension soon
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