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Basics of eikonal approximation: QED
✦ Charged particle emits soft photon 

‣ Propagator: expand numerator & denominator in soft momentum, keep lowest order 

‣ Vertex: expand in soft momentum, keep lowest order
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Basics  of eikonal approximation in QED
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Eikonal approximation: no dependence on emitter spin
✦ Emitter spin becomes irrelevant in eikonal approximation 

‣ Fermion 

‣ Approximate, and use Dirac equation 

‣ Result same as scalar case 

‣ Two things have happened 
✓ No sign of emitter spin anymore 
✓ Coupling of photon proportional to pµ  
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Eikonal exponentiation
✦ In the eikonal approximation, interesting patterns emerge
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One loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

Exponential series!
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Exponentiation using path integrals

M(p1, p2, {k}) =
�
DAs Dx(t) H[x] f1[As, x(t)] f2[As, x(t)] eiS[As]
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Can write scattering amplitude as nested path integral

Disconnected Connected

Eikonal vertices: sources for gauge bosons living on lines

Textbook result

Sum of all diagrams = exp
�
Connected diagrams
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EL, Stavenga, White

x(t): path of charged 
particle



Path integral method, non-abelian

✦ Not immediately obvious how this could work (the path integral must be an actual 
exponential), since 
‣ Source terms have non-abelian charges, so don’t commute 
‣ External line factors are path-ordered exponentials 
‣ Nevertheless 

✦ Proof uses replica trick from statistical physics
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More than eikonal: resummation for quark form factor
✦ Consider all corrections to the quark form factor 

‣ a diagrammatic analysis shows that it factorizes into a product of functions: 
✓ A soft function “S” (only IR/eikonal modes of loop momenta) 
✓ 2 jets functions “J” (collinear modes) 
✓ A hard functions “H” (off-shell, hard modes) 

✦ These are also all the virtual diagrams for the Drell-Yan process 
✦ This factorization also implies a resummation
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Factorization and resummation for Drell-Yan

✦ Now with Mellin moment “N” dependence (i.e., with radiation) 
✦ Near threshold, cross section is equivalent to product of 4 well-defined functions 
✦ Demand independence of  
‣ renormalization scale µ 
‣ gauge dependence parameter ξ 

✓ find exponent of double logarithm
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Factorization and threshold resummation
✦ Δi(N):  initial state soft+collinear radiation effects 
‣ real+virtual 
‣ αsnln2n N 

✦ Sij(N):  soft, non-collinear radiation effects 
‣ αsnlnn N 

✦ H:  hard function, no soft and collinear effects
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✦ Previous “(d)QCD” analysis was diagram based 
✦ Effective field theory approach: SCET 
‣ Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons 

✓ Powerful power counting. Using  +,-,T notation 

✓ Fields scale similarly:  

✦ Resummation via renormalization group
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Generic large x behavior
✦ For DY, DIS, Higgs, singular behavior when x→ 1 

‣ singularity structure for plus distributions is organizable to all orders, perhaps also for 
divergent logarithms? 

✦ After Mellin transform 

✦ We know a lot about logs and constants, very little about 1/N 
✦ Can we learn about such “next-to-eikonal/soft” corrections? 
✦ “Zurich” method of regions allows computation (for NNNLO Higgs production) 

✓ at least to p=37
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ln(N)/N terms
✦ Can be numerically important 

✦ We know that the leading series lni(N)/N exponentiates 
‣ by replacing  in resummation formula
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Extended Drell-Yan threshold resummation
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Ansatz: modified resummed expression
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Classic result: Low’s theorem 
‣ So far we only looked at emissions from external lines. At next-to-eikonal/soft order, also 1 

“internal” emission contributes 

✦ Low’s theorem (scalars, generalization to spinors by Burnett-Kroll, to massless particles 
by Del Duca → LBKD theorem) 

✓ Work to order k, and use Ward identity 

✦ Non-emitting amplitude determines the emission to NE accuracy, 
- with its derivative 
- but no detailed knowledge of internals needed
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Next-to-eikonal exponentiation via path integral
✦ Wilson lines are classical solutions of path integral 
✦ Fluctuations around classical path are NE corrections 

‣ All NE corrections from external lines exponentiate 
‣ Keep track via scaling variable λ  
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Low-Burnett-Kroll and path integral

17

H

S

S

S
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Next-to-eikonal corrections
✦ Keep 1 term more in k expansion beyond eikonal approximation 

‣ Now emitter-spin dependent, and has recoil 
‣ Decorrelation not obvious 
‣ Can we still make systematic statements (exponentiation, factorization) about next-to-

eikonal/soft corrections?
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Next-to-eikonal diagrammar
✦ As for eikonal case earlier 

‣ identify next-to-eikonal vertices 
‣ show that they “decorrelate” 

✓ as eikonal webs (2 eik. line irreducible), but now with 
new vertices 

✓ they become spin-sensitive 
✦ New 2-gluon correlations between eikonal webs → 

NE webs
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Exponentiation for NE corrections
✦ Upshot: one can define NE webs, using such NE Feynman rules.  

✦ They exponentiate too, no new proof needed 
‣ but they are not the only source of next-to-soft corrections
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Next-to-eikonal logarithms

✦ Our approach: understand NE corrections at amplitude level, then construct cross section 
✦ Use Drell-Yan as testbed 
✦ Goal: combine NE matrix elements with phase space to predict  NE (=NLP) logs for NNLO Drell-

Yan  
‣ Leading power done  

‣ Next-to-leading powers?  

✓ They come from double real emission, and one-real + one-virtual
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NE logs in DY: double real
✦ Check NE Feynman rules for NNLO Drell-Yan double real emission (only CF

2 terms) 

‣ Result at NE level (agrees with equivalent exact result) 

‣ Special vertex (2-gluon correlation) 

✓ gives zero after azimuthal integration
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Figure 19: Diagrams for the double-real-emission contribution to the NNLO Drell-Yan K factor
discussed in the text. A cut is implied over the intermediate state in each case, and complex
conjugates of the above diagrams (excluding (e), which is real) must also be included.

are not fully uncorrelated, but their correlation is simple, depending only on the global

variables of the multi-gluon system and not on individual gluon momenta.

This discussion applies to the explicit example of Drell-Yan production. We expect

that such arguments will apply more generally in other scattering processes, pending a

suitable parametrisation of the partonic momenta.

C. The double-real-emission contribution to the Drell-Yan K factor

In this appendix we briefly describe how to compute the terms proportional to C2
F of the

Drell-Yan K-factor, for the qq̄ initial state, by using ordinary Feynman diagrams and ex-

panding them to NE order. The relevant diagrams are shown in fig. 19. The corresponding

squared matrix elements are easily computed, and must then be integrated with the phase

space measure in eq. (6.26). As an example, diagram (a) contributes a factor

|M|2(a) ∝ Tr [̸ p̄γα(̸p− ̸k1− ̸k2)γν (̸p− ̸k1)γµ ̸pγα(− ̸ p̄+ ̸k1+ ̸k2)γµ(− ̸ p̄+ ̸k2)γν ]
(p− k1 − k2)2 (p − k1)2 (−p̄+ k1 + k2)2 (−p̄+ k2)2

. (C.1)

Note that the contributions from diagrams (a) − (d) must be counted twice in order to

include Hermitian conjugate graphs, while diagram (e) is real.

To calculate the squared matrix element to NE order, one first relabels ki → ξki, so

that

p̄ · ki → ξ p̄ · ki, p · ki → ξ p · ki, ki · kj → ξ2 ki · kj . (C.2)

– 62 –

One then expands each diagram to first subleading order in ξ, which corresponds to the

NE approximation. Through repeated use of the identities

p · k1
p · k2

=
1

p · k2
s− t̃

2
− 1 ,

p̄ · k1
p̄ · k2

=
1

p̄ · k2
s12 + t̃−Q2

2
− 1 , (C.3)

(with similar results for k1 ↔ k2), each diagram can be written as a sum of terms containing

no more than two factors of p · ki and p̄ · ki. Then each term becomes an integral of the

form of eq. (6.29). The remaining phase space integrals can be carried out after expanding

the integrand in powers of 1− z and ϵ, as described for the NE calculation in Sec. 6.2. The

final result for the full amplitude (keeping only logarithmic terms with rational coefficients

as done in the text) is given by

K(2)
NE(z) =

(αs

4π
CF

)2 [
−32

ϵ3
D0(z) +

128

ϵ2
D1(z) −

128

ϵ2
log(1− z)

− 256

ϵ
D2(z) +

256

ϵ
log2(1− z)− 320

ϵ
log(1− z)

+
1024

3
D3(z)−

1024

3
log3(1− z) + 640 log2(1− z)

]
, (C.4)

which is in complete agreement with the sum of eqs. (6.31) and (6.33).
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NE logs in Drell-Yan: one real - one virtual
✦ For the complete set of subleading NE logarithms, we must also consider also       

1-real plus 1-virtual contributions 

‣ More subtle, virtual momenta are not always (next-to)-soft. We follow two approaches: 
- method of regions   
- factorization
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’’nnlo 1b’’ (e)’’nnlo 1’’ (f)

Figure 5: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged on a single external leg. For each diagram shown there are other three, obtained
interchanging t $ u and/or taking the complex conjugate diagram.
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Hard region

Expanding the propagators in the hard region according to the expression provided in appendix
C.1 and performing the traces, one finds integrals of the type

Z
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Which are scaleless if p2 = 0. The hard region therefore gives no contribution.

Collinear region

In the collinear region only the diagram NNLO0 shown in 5 and its complex conjugate give a
contribution. The remaining two diagrams (the ones involving the exchange t $ u) contain

7

’’nnlo 0’’ (h) ’’nnlo 0b’’ (g)

’’nnlo 1b’’ (e)’’nnlo 1’’ (f)

Figure 5: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged on a single external leg. For each diagram shown there are other three, obtained
interchanging t $ u and/or taking the complex conjugate diagram.
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Hard region

Expanding the propagators in the hard region according to the expression provided in appendix
C.1 and performing the traces, one finds integrals of the type
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Which are scaleless if p2 = 0. The hard region therefore gives no contribution.

Collinear region

In the collinear region only the diagram NNLO0 shown in 5 and its complex conjugate give a
contribution. The remaining two diagrams (the ones involving the exchange t $ u) contain
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’’nnlo 2’’ (c) ’’nnlo 2b’’ (d)

’’nnlo 3b’’ (b)’’nnlo 3’’ (a)

Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.
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1 Real plus1Virtual
✦ We redid exact calculation, keeping only CF2 terms 
‣ only the full result was known in the literature 
‣ result, up to constants (dropped higher powers of 1-z) 

‣ bare results, no renormalization or factorization counterterms 
‣ Can we reproduce (some of) this using method of regions?
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Figure 5: Squared matrix elements contributing at NLO. The cut denotes the final state.

It is useful to also briefly recall the calculation of the real-emission contribution at O(↵s), as
this is closely related to the 1-real, 1-virtual contributions in what follows (i.e. the integration
over the phase-space of the emitted gluon is the same). This is given by the diagrams shown in
figure 5, and one may introduce the Mandelstam invariants

t = �2k · p, u = �2k · p̄. (4.7)

The integration over the emitted gluon phase space can be carried out by parametrising 4-vectors
according to

p =

p
s

2

(1, 1,~0?); p̄ =

p
s

2

(1,�1,~0?); k =

(1� z)
p
sp

2

(1, cos ✓, sin ✓, 0). (4.8)

One may then define

y =

1 + cos ✓

2

, (4.9)

finding
t = �2s(1� y)(1� z); u = �2sy(1� z). (4.10)

The NLO K-factor, defined in eq. (4.3), is computed by including a factor �(k0� (1�z)p0) in the
two-particle phase-space, and introducing the appropriate normalisation according to eq. (4.5).
Setting the renormalisation scale via µ2

= Q2, one finds
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, (4.11)

where A(1) is the matrix element for a single real emission. The above procedure can be used
also for integrating over the phase space of the emitted gluon in the 1-real, 1-virtual contribution
to the NNLO K-factor.

Although the complete NNLO Drell-Yan K-factor has been presented in [39], no separate
result exists in the literature for the 1-real, 1-virtual contribution. We have here recalculated this
up to NE order, and the result (keeping only rational terms) is
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where we have defined the notation

Di =

✓
log

i
(1� z)

(1� z)

◆

+

, L
1

= log(1� z). (4.13)
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Method of regions approach
✦ Method of region approach, extended to next power 
‣ Should allow treatment of (next-to-)soft and (next-to-)collinear on equal footing 

✦ How does it work? 
‣ Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by 

appropiate scaling 

‣ expand integrand in λ, to leading and next-to-leading order 
‣ but then integrate over all k1 anyway 
‣ Treat emitted momentum as soft and incoming momenta as hard

25

Bonocore, EL, Magnea, Melville, Vernazza, White

’’nnlo 2’’ (c) ’’nnlo 2b’’ (d)

’’nnlo 3b’’ (b)’’nnlo 3’’ (a)

Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.

4.5 Diagrams NNLO2

The diagrams NNLO2 in fig. 6 reads
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MoR: collinear region
✦ Soft emission from triangle graphs: 

‣ Result 

✦ Soft emission from self-energy diagrams 

‣ Result
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3.4. The Drell-Yan K-factor in full QCD

Figure 3.4: Squared diagrams contributing to DY production at NNLO, involving one real
and one virtual emission. Diagrams obtained by interchanging p $ p̄ and/or complex
conjugation are not shown.
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After carrying out the Dirac trace and performing virtual integration over the loop
momentum k

1

, one may expand the squared amplitude as a Laurent series in (1 � z),
where the NE order corresponds to the first subleading corrections. Then the integration
over the two-particle phase space follows straightforwardly. It is useful to present results
for each individual Feynman diagram. In so doing, we will neglect all transcendental
constants for brevity, as these do not bring any relevant information and can be easily
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Collinear(+anti-collinear) region
✦ Note 
‣ Only NLP logarithms (intermediate LP logs cancel) 
‣ Terms after loop integral contain 

‣ When integrated over k2, give the right log(1-z) terms, so  
- expand in ϵ before expanding in k2! 
- illustrates again breakdown of original LBK theorem
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Method of regions results
✦ One finds 
‣ Hard region (expansion in λ2) 

✓ reproduces already all plus-distributions, and some NLP logarithms 

‣ Soft region (expansion in λ2) 
✓ all integrals are scale-less, hence all zero in dimensional regularization 

‣ (anti-)collinear regions (expansion in λ) 
✓ only give NLP logarithms, once all diagrams in set are summed 

✦ Nice: 
‣ the full  K(1)1r,1v is reproduced, including constants → 4 powers of NLP logs 

✦ MoR gives diagnostic of next-to-soft power logs, but doesn’t give predictive power  
✦ For this, we need a factorization approach

28



Next-to-soft in SCET 
✦ Early SCET results beyond leading power in heavy-to-light currents 
‣ need for multi-pole expansions for appropiate scaling  
‣ application underway for Drell-Yan current operator 

✦ Analysis of LBKD theorem at one-loop level in SCET 
‣ general approach, has collinear splitting and collinear fusion terms
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Figure 7: Illustrations of the various contributions to the one-loop subleading soft theorem

at O(�2). Fig. (a) are the hard loops, (b) are soft loops, and (c), (d), (e) and (f) are collinear

loops. (c) and (d) are the collinear loops arising from splitting amplitudes, while (e) and (f)

represent collinear loops from the fusion terms in the one-loop subleading soft theorem. In

each figure, the matching coe�cient is written, with A[0] and A[1] the tree-level or one-loop

amplitude. For the fusion terms in (e) and (f), we use the short-hand A[0]
2coll ⌘ C [0](1X) and

A[0]
3coll ⌘ C [0](2X2).

that were used to obtain UV finite results for the hard matching coe�cients / amplitudes,

plus coupling renormalization. Accounting for this, Eq. (4.47) yields a UV finite result. This

amplitude will still contain IR divergences, which appear as 1/✏2 and 1/✏ poles at this loop

order. These IR divergences will only cancel when we consider the phase space integrated

amplitude squared for a physical cross section, which also contains additional real emission

diagrams. The real emission diagrams are not part of Eq. (4.47), but can be factorized and

treated in a similar manner, as discussed below in Sec. 4.4.

Generically, all of the terms in Eq. (4.47) will be non-zero, but some contributions may

vanish for special cases with particular helicity or color choices. First consider soft dynamics.

At leading power the soft gluon couplings preserve collinear helicity at any loop order (which is

explicit in Feynman-’t Hooft gauge). The power suppressed O(�2) soft couplings also preserve

helicity at tree level, as was explicitly seen in our discussion of LBK. Therefore there are no

helicity flips in the first two terms of Eq. (4.47). Due to the connection between chirality and

helicity there are also no helicity flips for collinear fermions in the presence of soft loops, which

are contributions in the 3rd and 4th lines of Eq. (4.47). Determining whether there are spin

flips to the collinear gluon terms in the 3rd and 4th lines of Eq. (4.47) requires an investigation

beyond those done here (due to the vector indices µ and ⌫ in those terms). Also, the hard

coe�cient in the N -jet operator CN is evaluated at tree-level in all soft loop contributions in
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that were used to obtain UV finite results for the hard matching coe�cients / amplitudes,

plus coupling renormalization. Accounting for this, Eq. (4.47) yields a UV finite result. This

amplitude will still contain IR divergences, which appear as 1/✏2 and 1/✏ poles at this loop

order. These IR divergences will only cancel when we consider the phase space integrated

amplitude squared for a physical cross section, which also contains additional real emission

diagrams. The real emission diagrams are not part of Eq. (4.47), but can be factorized and

treated in a similar manner, as discussed below in Sec. 4.4.

Generically, all of the terms in Eq. (4.47) will be non-zero, but some contributions may

vanish for special cases with particular helicity or color choices. First consider soft dynamics.

At leading power the soft gluon couplings preserve collinear helicity at any loop order (which is

explicit in Feynman-’t Hooft gauge). The power suppressed O(�2) soft couplings also preserve

helicity at tree level, as was explicitly seen in our discussion of LBK. Therefore there are no

helicity flips in the first two terms of Eq. (4.47). Due to the connection between chirality and

helicity there are also no helicity flips for collinear fermions in the presence of soft loops, which

are contributions in the 3rd and 4th lines of Eq. (4.47). Determining whether there are spin

flips to the collinear gluon terms in the 3rd and 4th lines of Eq. (4.47) requires an investigation

beyond those done here (due to the vector indices µ and ⌫ in those terms). Also, the hard

coe�cient in the N -jet operator CN is evaluated at tree-level in all soft loop contributions in
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A factorization approach to next-to-soft
✦ Can we predict the log(1-z) logarithms?  
‣ For both we need to factorize the cross section, as we did earlier 

✓ H contains both the hard and the soft function (non-collinear factors) 
✓ J: incoming jet functions 

✦ Next, add one extra soft emission, as in Low’s theorem. Let every blob radiate! 
✓ Can we compute each new “blob + radiation?”, and put it together?
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Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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(Next-to-)Soft currents
✦ Eikonal/soft approximation for gauge theories and gravity long known 

✦ Generalization to next-to-eikonal/soft 

✓ Very generally true for soft spin 0,1/2,1,2 emissions, abelian and non-abelian 
- Includes emissions from inside hard function 

✓ Coupling to full Lorentz generator (where spin part is included, e.g. for fermions) 
- Much recent work 
- Breaking at loop level
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nX

i=1

✏µ⌫(k)p
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i k⇢J
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pi · kS(1)
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i=1

✏µ(k)k⇢J (i)µ⇢

pi · k

Bern, Davies, Di Vecchia, Nohle

Broedel, Plefka, de Leeuw, Rosso



A factorization approach
✦ Work at amplitude level, again only CF2 terms 
‣ Later: contract with c.c. amplitude and integrate over phase space 

✦ Emission can occur from either H or J’s 

‣ For emission from jet function, define 

✓ “radiative jet function”, universal
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Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here

6

Aµ ✏
µ(k) = AJ

µ ✏µ(k) +AH
µ ✏µ(k)

Jµ (p, n, k2)u(p) =

⌧
0

����
Z

ddye�i(p+k2)·y�n(y,1) (y)jµ(0)

���� p
�



Ward identity 
✦ For emission from H, use Ward identity 

‣ where for the radiative jet function there is the simple WI 

‣ Then hard function emission is just derivative 

✦ Split polarization sum of emitted gluon/photon using “K” and “G” projectors 

‣ Useful: K is leading, G gives subleading terms
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Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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2X
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qi
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Factorization approach: main formula
✦ Upshot: a factorization formula for the emission amplitude (CF2 terms) 

✦ Remarks 
‣ for logs: to be contracted with cc amplitude 
‣ only process dependent terms are H and A 
‣ Jµ is important, need it at loop level
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’’nnlo 2’’ (c) ’’nnlo 2b’’ (d)

’’nnlo 3b’’ (b)’’nnlo 3’’ (a)

Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.

4.5 Diagrams NNLO2

The diagrams NNLO2 in fig. 6 reads

�NNLO
2

= g4s

Z
[dk1] [dk2]

1
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1
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LBKD theorem, simplified
✦ For the non-radiative jet we would need to compute 

‣ double line is Wilson line in nµ direction 
✦ We choose nµ = pµ, so n2 = 0. In dimensional regularization we have then 

‣ Yields simple expression for emission amplitude 

‣ A is known, so need 
- factorized (external) contributions 
- derivative contribution 
- Jµ contribution
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J (1)

n2 J (1)

P

J (1)

V

J (1)

V,CT

Figure 2: Feynman diagrams contributing to the one-loop jet function. Here J (1)

V,CT
denotes the

counterterm associated with the vertex graph, J (1)

V , while counterterms associated with external
leg corrections have been omitted.

associated with external leg corrections. For n2 6= 0, the complete jet function must depend
on the dimensionless variable z ⌘ (p · n)2/(n2µ2

), as a consequence of the invariance of the
eikonal Feynman rules under the rescaling nµ ! nµ. Furthermore, the function is well defined
in dimensional regularization due to the presence of the energy scale p · n. For n2

= 0, both of
these properties are lost: dependence on p · n is in principle ruled out by rescaling invariance, so
that all integrals arising in the relevant Feynman diagrams are effectively scale-less, and must be
defined to vanish in dimensional regularization. In fact, there is an extra twist: while the diagrams
vanish, one finds that there is a residual dependence on p · n in the UV counterterms, due to an
anomalous breaking of rescaling invariance originating from the collinear pole associated with
emission from the light-like Wilson line [13, 19].

To give a concrete example, consider the first diagram in Fig. 2, which we denote by J (1)

V

. In
d = 4� 2✏ dimensions, and for n2

= 0, it is given by

J (1)

V

(p, n; ✏) = 2iµ2✏g2s

Z
ddk

(2⇡)d
( 6p� 6k) 6n

k2 2n · k (p� k)2
(3.1)

= 2iµ2✏g2s

Z
ddk

(2⇡)d

Z
1

0

dx

Z
1

0

dy
2y ( 6p� 6k) 6n

⇥
yk2 � 2xyk · p+ 2(1� y)n · k

⇤
3

.

In the second line, we have introduced Feynman parameters, and we note the characteristic
parameter dependence of the k2 term in the denominator, which arises in the presence of linear
denominators. Carrying out the momentum integration and using the Dirac equation, one may
rewrite this as

J (1)

V

(p, n; ✏) =

↵s

2⇡

�
4⇡µ2

�✏
�(1 + ✏) (�2p · n)�✏ 1

✏(✏� 1)

Z
1

0

dy y�1+✏
(1� y)�1�✏ . (3.2)

At this point, one might be tempted to interpret directly the y integral as B(✏,�✏) = 0. More
accurately, one observes that the integral is not well defined for any values of ✏, and must
therefore be defined to vanish in dimensional regularization. In this simple case, it is actually
easy to disentangle the ultraviolet divergence (arising from the region y ! 0) from the infrared
one (arising from the region y ! 1). One may simply insert a factor of (1 � y) + y = 1 to
see explicitly that infrared and ultraviolet poles cancel exactly; using different regulators yields
compatible results. The standard treatment at this point is compute the renormalized jet function,
isolating the ultraviolet divergence in Eq. (3.2) and defining the appropriate MS counterterm to
subtract it. The sum of J (1)

V and J (1)

V,CT
is then simply the negative of the UV pole of J (1)

V ,
which is correctly interpreted as an infrared divergence. For n2

= 0 one recovers the expected
double soft-collinear pole because of the explicit collinear divergence in Eq. (3.2). The external
leg corrections in Fig. 2 can be treated similarly. In what follows, we will take the alternative
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External contribution
✦ Fairly straightforward 

‣ Reproduces all LP logs (plus-distributions) 
‣ Agrees with factorization of eikonal radiation, and NE Feynman rules
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5.5. Drell-Yan K-factor revisited

Combining Eq. (5.60) with both d�LP and d�NLP and Eq. (5.61) with only d�LP , we
find the following contribution to the K-factor:

K(2)

ext

(z) =
⇣↵s

4⇡
CF

⌘

2

(

32
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h

D
0

(z) � 1
i

+
8

"2

h

� 8D
1

(z) + 6D
0

(z) + 8L(z) � 14
i

+
16

"

h

4D
2

(z) � 6D
1

(z) + 8D
0

(z) � 4L2(z) + 14L(z) � 14
i

� 128

3
D

3

(z) + 96D
2

(z) � 256D
1

(z) + 256D
0

(z)

+
128

3
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)

. (5.62)

Comparing this result with the total result from the full QCD calculation in Eq. (3.36),
we see that all LP logarithms are correctly reproduced. This is not surprising: we expect
that plus distributions belong to the eikonal approximation, and we already verified in
Chapter 3 that the use of effective eikonal Feynman rules correctly reproduces the LP
structure. More precisely, we see that the result in Eq. (5.62) is the same as the contribution
computed in Chapter 3 with the use of effective Feynman rules. Already at that point we
concluded that LP logarithms were under control with simple diagrammatic techniques.
Moreover, we recall that this result coincides with the factorizable contribution from the
hard region of Chapter 4. Here, we recover that contribution as one of the terms coming
from the LBKD theorem.

Thus we have verified that the next-to-soft factorization formula of the LBKD theorem
does not spoil the well-known leading power soft factorization. We therefore expect the
remaining two contributions (K(2)

@A and K(2)

radJ

) to be strictly NLP.

The derivative contribution

As we have seen in Eq. (5.49), the derivative contribution corresponds to the interaction of
the emitted particle with the orbital angular momentum Lµ⌫ . The explicit computation of
this contribution in the amplitude is straightforward, upon using Eq. (2.26). Considering
for instance the derivative with respect to p, one gets

G⌫µ(p, k)
@A(1)

@p⌫
=



� "

p · p̄

✓

�pµ +
p̄ · k
p · k p̄µ

◆�

A(1) . (5.63)

Of course, we have to include the contribution from both legs. Again we contract with
the real emission amplitude and integrate over the phase space, at the correct order in
the threshold expansion. The final contribution to the K-factor is

K(2)
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Derivative contribution
✦ Not through effective Feynman rules, but still not too hard 

‣ NLP terms only 
‣ Sum of external and derivative contributions corresponds precisely to MoR hard region 

contribution
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Comparing this result with the total result from the full QCD calculation in Eq. (3.36),
we see that all LP logarithms are correctly reproduced. This is not surprising: we expect
that plus distributions belong to the eikonal approximation, and we already verified in
Chapter 3 that the use of effective eikonal Feynman rules correctly reproduces the LP
structure. More precisely, we see that the result in Eq. (5.62) is the same as the contribution
computed in Chapter 3 with the use of effective Feynman rules. Already at that point we
concluded that LP logarithms were under control with simple diagrammatic techniques.
Moreover, we recall that this result coincides with the factorizable contribution from the
hard region of Chapter 4. Here, we recover that contribution as one of the terms coming
from the LBKD theorem.

Thus we have verified that the next-to-soft factorization formula of the LBKD theorem
does not spoil the well-known leading power soft factorization. We therefore expect the
remaining two contributions (K(2)

@A and K(2)

radJ

) to be strictly NLP.

The derivative contribution

As we have seen in Eq. (5.49), the derivative contribution corresponds to the interaction of
the emitted particle with the orbital angular momentum Lµ⌫ . The explicit computation of
this contribution in the amplitude is straightforward, upon using Eq. (2.26). Considering
for instance the derivative with respect to p, one gets
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Of course, we have to include the contribution from both legs. Again we contract with
the real emission amplitude and integrate over the phase space, at the correct order in
the threshold expansion. The final contribution to the K-factor is
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Radiative jet function contribution
✦ Formal definition 

✦ Diagrams:
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Jµ (p, n, k2)u(p) =
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Radiative jet function contribution
✦ Find 

✦ Occurs with G-tensor: filters spin-dependent part. At lowest order Jν(0): 

✦ One-loop terms breaks next-to-soft theorem. Interestingly it is an eigenstate of Gµν 

✦ Find after phase space (k2) integral (chosing n=p) 

‣ Precise correspondence with collinear region
39

J⌫(1) (p, n, k ; ✏) = (2p · k)�✏
h✓2

✏
+ 4 + 8✏

◆✓
n · k
p · k

p⌫

p · n � n⌫

p · n

◆
� (1 + 2✏)

i k↵⌃↵⌫

p · k

+

✓
1

✏
� 1

2
� 3✏

◆
k⌫

p · k + (1 + 3✏)

✓
�⌫/n

p · n � p⌫/k/n

p · k p · n

◆i
+ . . .

G⌫µ

✓
� p⌫
p · k2

+
/k2�⌫

2p · k2

◆
=

k2 ⌫ [�⌫ , �µ]

4p · k2

G⌫µJ (1)
⌫ (p, n, k) = J (1)

⌫ (p, n, k)

K(2)
radJ =

✓
↵sCF

4⇡

◆2 �16

✏2
� 20

✏
+ 60 log(1� z) +

48

✏
log(1� z)� 72 log

2
(1� z)� 24

�



From amplitudes to logarithms

✦ Now put it all together, contract with cc amplitude and integrate over phase space 

✦ Find also here perfect agreement with exact NLP result (and of course MoR result), 
for 4 powers of logarithms
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Next steps
✦ Recent  
‣ January 2016 workshop at Higgs Centre, Edinburgh 

✦ First on deck 
‣ non-abelian terms (DY, Higgs..) 

- new regions, also captured by radiative function 

‣ Resummation  
- Effective field theory operators (many!) known, now compute anomalous dimensions 
- Using next-to-eikonal webs for exponential form
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Summary

✦ Next-to-soft corrections 
‣ approach through NLP terms in SCET 
‣ here: factorization approach 

✦ Obey extended non-abelian exponentiation (new webs) 
✦ Governed by LBKD theorem; collinear loop momenta key 

‣ understood through method of regions 
‣ established predictive power through factorized expression 

✓ clear correspondence to MoR terms 
✦ Expect non-abelian extension soon
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