Study of VBF/VBS in the LHC at 13 TeV and available tools

Raquel Gómez Ambrosio Università & INFN @Torino

Second Annual Meeting of HiggsTools ITN

April 13, 2016

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

Introduction: VBF/VBS motivation

Tools used for simulation: Monte Carlo generators PHANTOM MadGraph5_aMC@NLO

Search for new physics: EFT

Top-down approach Bottom-up approach Dim-6 LO EFT NLO EFT

Next steps

Introduction:

-VBF/VBS motivation

Vector Boson Fusion & Vector Boson Scattering

Why look at this production channel? Mainly 2 reasons:

- Subleading channel for H production at LHC.
- Most important channel for EWSB and unitarity studies.

Plus: "Someone has to do it" : LHC will reach % accuracy \rightarrow EW corrections relevant

イロト イ押ト イヨト イヨト

Effective Field Theories

Introduction:

└─_VBF/VBS motivation

Why study VBF at LHC RUN-II ?

- σ_{VBF} grows with \sqrt{s} .
- \blacktriangleright Also the obvious: big luminosity \rightarrow big statistics.

└─VBF/VBS motivation

Delayed unitarity

Facts of perturbative unitarity

- ▶ In principle $\sigma_{VBF} \propto s$, i.e. it is divergent when $s \rightarrow \infty$
- ▶ The Higgs boson stabilizes σ_{VBF} , making it converge for $s \to \infty$ But ...
- What happens between the SM scale and the scale for new physics? (Recall, VBS is the portal to triple and quartic gauge and Higgs couplings)

Effective Field Theories

Introduction:

└─_VBF/VBS motivation

Importance of NLO EW corrections

For $M_H = 125$ GeV, in gluon fusion: $\delta_{EW} \approx 5\% \approx \mathcal{O}$ (LHC RUN2)

higgstools

└─ Tools used for simulation: Monte Carlo generators

æ

・ロト ・四ト ・ヨト ・ヨト

PHANTOM: Monte Carlo Event Generator for Six Parton Final States

Scope:

Six fermion final states: VBF, VBS, $t\bar{t}$ production ...

PHANTOM output

Unweighted events (LHA) Cross sections $\left. \begin{array}{c} \\ \\ \end{array} \right\}$ Lowest Order: $\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^4 \alpha_s^2) + \text{interferences}$

Features

- Uses the "modular helicity formalism" for the calculation.
- Does **not** use narrow width approximations ($\sigma \times BR$)
- Faster than other MC generators, since it has all the master amplitudes implemented.
- ▶ Need to run parton shower (PYTHIA) in order to get final events.
- A. Ballestrero, A. Belhouari, G. Bevilacqua , V. Kashkan, E. Maina

A D F A B F A B F A B F

Tools used for simulation: Monte Carlo generators

MadGraph5_aMC@NL0

MadGraph5_aMC@NLO

"The MC generator that will calculate any amplitude"

- Predecessors: MadGraph, MadEvent, MadGraph5, MC@NLO
- Also Lowest Order in the EW sector
- \blacktriangleright An interface to <code>PYTHIA</code> is already implemented \rightarrow good for theorists
- Different algorithm (QCD inspired)
- Handicap: Rather difficult to master
- Highlight: Can accomodate Dim-6 EFT operators

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, M. Zaro

э

(日)、

Effective Field Theories

Tools used	for	simulation:	Monte	Carlo	generators

Q: MADGRAPH or PHANTOM? A: Rivet

Make sure you understand your MC generators before you claim New Physics!

Effective field theory

Top-down approach

In the top down approach, we integrate out the heavy fields. The propagator becomes a point.

Recall Fermi theory:

— Top-down approach

Effective field theory

Top-Down approach

- Model-dependent, therefore not very efficient ...
- Useful for Dark Matter and SUSY searches

Low energy behaviour of standard model extensions

Michele Boggia^{a,1}, Raquel Gomez-Ambrosio^{b,1}, Giampiero Passarino^{b,1}

^aAlbert-Ludwigs-Universität Freiburg, Physikalisches Institut D-79104, Freiburg, Germany

^bDipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

arXiv: 1603.03660

(日)、

Bottom-up approach

Bottom-up approach

In the bottom up approach we do exactly the opposite:

 <u>Observe:</u> Unlike in the top-down, the relation is not bijective: one low-energy operator might come from many different UV completions

Bottom-up approach

SM EFT (bottom-up approach)

- ▶ α_k is the Wilson coefficient of the k^{th} operator \rightarrow needs to be calculated
- One can build 80 dim-6 operators (compatible with $SU(2) \times SU(3) \times U(1)$ and lepton/baryon conservation)
- ► Eqs. of motion, reduce this set to a 59-operator basis (for one generation of particles! for three → 2499 operators)
- "Warsaw Basis" \rightarrow arXiv: 1008.4884

Bottom-up approach

Warsaw Basis: 34 Bosonic + 25 (+5) fermionic operators

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$			$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})$
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi) (\bar{d}_p \gamma^\mu d_r)$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

$(\overline{L}L)(\overline{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$				
Qu	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating						
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$					
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$					
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{loqu}^{(1)}$	$(\bar{l}_{p}^{j}e_{\tau})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$					
$Q_{loqu}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Warsaw Basis: Purely Fermionic Operators

At lowest order in VBF, these operators do not contribute. At NLO they should be taken on account during the renormalization process

(日)、(同)、(日)、(日)

Bottom-up approach

Warsaw Basis: Bosonic Operators

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

arXiv: 1008.4884 higgstools

Dim-6 LO EFT

Implementing EFT in Vector Boson Fusion

What is LO EFT? is it more relevant than NLO-SM? and NLO-EFT?

$$\mathcal{M} = \mathcal{M}_{SM}^{\rm LO} + \underbrace{\mathcal{M}_{SM}^{\rm NLO}}_{\text{all available}} + \underbrace{\mathcal{M}_{dim=6}^{\rm LO} + \mathcal{M}_{dim=6}^{\rm NLO}}_{\text{is formatick}}$$

all available QCD, EW corrections $\kappa-$ framework and dim 6 EFT

Dim-6 LO EFT

Implementing EFT in Vector Boson Fusion

What is LO EFT? is it more relevant than NLO-SM? and NLO-EFT?

$$\mathcal{M} = \mathcal{M}_{SM}^{\mathrm{LO}} + \underbrace{\mathcal{M}_{SM}^{\mathrm{NLO}}}_{\text{all available}} + \underbrace{\mathcal{M}_{dim=6}^{\mathrm{LO}} + \mathcal{M}_{dim=6}^{\mathrm{NLO}}}_{\text{and dim 6 EFT}}$$

The answer depends on the scale of new physics Λ , the only way to be sure is to calculate the contributions and include them in the analysis.

aastoo

э

・ロト ・四ト ・モト ・モト

Dim-6 LO EFT

Vector Boson Fusion Lowest Order EFT

Amplitude with dim-6 insertions:

$$\mathcal{A} = \sum_{n=N}^{\infty} g^n \mathcal{A}_n^{(4)} + g_6 \sum_{n=N_6}^{\infty} \sum_{l=0}^n g^n g_6^l \mathcal{A}_{nl}^{(6)}, \qquad \text{with}: \quad \mathbf{g}_6 = \frac{1}{\sqrt{2} \mathbf{G}_{\mathrm{F}} \Lambda^2}.$$

VBF Signal

At lowest order we don't have to consider loops originated by dimension 6 operators. Therefore only corrections to the actual SM vertices

Dim-6 LO EFT

Dim-6 LO EFT

Vector Boson Fusion: Results

Vertices we have to calculate:

 $\bar{u}uZ,\,\bar{d}dZ$, hZZ , hW^+W^- , $W^-\,\,u\bar{d}$, $W^+\,d\bar{u}$

Life is easy at LO ...

<ロト <回ト < 注ト < 注ト

L Dim-6 LO EFT

Bosonic dim-6 operators

Triple and quartic gauge couplings

	X^3	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$			
Q_G	$A^{BC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		
$Q_{\tilde{G}}$	$f^{ABC} \tilde{C}^{A\nu} C^{\mu\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$		
Q_W	$\varepsilon^{IJK}W^{\nu}_{\mu}W^{\rho}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
$Q_{\widetilde{W}}$	$\mathcal{F}^{I\sigma K}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$			
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_{\tau}) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{\tau})$		
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$		
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$		
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_{p}\gamma^{\mu}u_{\tau})$		
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

・ロト ・回ト ・ヨト ・ヨト

Triple and quartic gauge couplings

Dim-6 LO EFT

Bosonic dim-6 operators

	X^3	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$			
Q_G	$ABC G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C}_{\nu}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{C}^{A\nu} C^{\mu\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$		
Q_W	$\varepsilon^{IJK} W^{\mu\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
$Q_{\widetilde{W}}$	${}^{JK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{\mu}_{\rho}$						
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$			
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_{\tau}) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{\tau})$		
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$		
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} u_{\tau})$		
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

Purely Higgs

・ロト ・回ト ・ヨト ・ヨト

Dim-6 LO EFT

Bosonic dim-6 operators

Purely Higgs

Dim-6 LO EFT

Bosonic dim-6 operators

Purely Higgs

メロト 不得下 オヨト オヨト - 3

Dim-6 LO EFT

Bosonic dim-6 operators

Purely Higgs

F 66	F 1 1	
Effective	Field	heories

- Search	for new	physics:	EFI

— Dim-6 LO EFT

Only 17 of the bosonic operators contribute to the signal vertices

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$G^{ABC}_{\mu}G^{A\nu}_{\nu}G^{B\rho}_{\nu}G^{C}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} \tilde{C}^{A\nu}_{\nu} C^{\nu\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$^{JK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eW}	$(\bar{t}_p \sigma^{\mu\nu} e_r) \tau^I \mathcal{O} W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} L)$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i D^{I}_{\mu} \phi) l_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{*}i \overrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{*} \varphi)$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

higgstools

・ロト ・四ト ・モト ・モト

Dim-6 LO EFT

(日) (同) (日) (日)

This is not the end of the story:

Dim-6 operators also induce corrections to kinetic terms and not only to vertices. If we want to be consistent we have to restore the canonical normalization of the \mathcal{L}_{SM} in the first place.

Even at Lowest Order ...

Effective Field Theories

Search for new physics: EFT

Dim-6 LO EFT

One example: $(\phi^{\dagger}D^{\mu}\phi)^{*}(\phi^{\dagger}D_{\mu}\phi)$

Choose one paradigmatic operator from the Warsaw basis: $(\phi^{\dagger}D^{\mu}\phi)^{*}(\phi^{\dagger}D_{\mu}\phi)$. Expand it in terms of physical fields:

$$\begin{split} \phi &= \frac{1}{\sqrt{2}} \begin{pmatrix} h + \sqrt{2}F \\ 0 \end{pmatrix}, \quad D^{\mu} &= \partial_{\mu} + \frac{ig}{2} B^{a}_{\mu} \tau^{a} + \frac{ig'}{2} B^{0}_{\mu} \tau^{0} \\ (\phi^{\dagger} D_{\mu} \phi)^{2} &= \frac{1}{4} \left((h + \sqrt{2}F) (\partial_{\mu} h + i \left(\frac{g B^{3}_{\mu} + g' B^{0}_{\mu}}{2} \right) (h + \sqrt{2}F)) \right)^{2} \end{split}$$

• Corrections to the h propagator: $\frac{F^2(\partial_\mu h)^2}{2}$

• Corrections to the Z propagator: $\frac{F^4}{4} \left(g^2 \cos^2 \theta + g'^2 \sin^2 \theta + 2gg' \sin \cos \theta\right) Z^2$

• Correction to the hZZ vertex: $2\sqrt{2}F^3 \left(g^2 \cos^2 \theta + g'^2 \sin^2 \theta + 2gg' \sin \cos \theta\right) Z^2 h$

-

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Some words on NLO and renormalization

At NLO, the procedure is the same, with two added difficulties:

- 1. Need to renormalize the new $\mathcal{L}_{eff} \rightarrow The SM$ renormalization is not recyclable.
- 2. Many new contributions will appear, through non-SM loops:

higgstools

・ロト ・ 一下・ ・ ヨト ・

-

Ongoing work ... More in future presentations

Final words: Next steps

Now that the Higgs EFT and SMEFT have been formally developed and the first beams of RUN-2 are circulating, it's time to design the experimental analyses.

Focusing on two tasks:

- 1. Implementation of dim-6 operators in the MC generators and analysis of cross-sections for \mathcal{L}_{eff} (currently addressed in MadGraph)
- 2. Definition of pseudo-observables (PO's) to be measured: partial decay widths, effective couplings that might hint at New Physics

A little taste of PO's

Figure : $p_T(j_1)$ Vs. $p_T(j_2)$. Left plot: SM. Right plot: Prediction for $\epsilon_{Wu_1} = 0.05$

higgstools

(日) (同) (日) (日)

Preliminary plots from HXSWG WG2

A little taste of PO's

Figure : M_Z Vs. $p_T(Z)$. Left plot: SM. Right plot: Prediction for $\kappa_{ZZ} = 1$ and $\epsilon_{Zu_I} = 0.1$.

Preliminary plots from HXSWG WG2

・ロト ・回ト ・ヨト ・ヨト

