

HiggsTools 2nd annual meeting Granada, April 2016

Tools for Effective Field Theory Calculations (EFT from the top down)

Jose Santiago

Based on:

- J. Blas, M. Chala, M. Perez-Victoria, J.S. [1412.8480]
- F. del Aguila, Z. Kunszt, J.S. [1602.00126]
- C. Anastasiou, A. Lazopoulos, J.S. (in progress)

The LHC is a discovery machine

And sure enough we got our discovery!

... but the sweet taste from this great triumph might not last long

The Higgs mass is where we expected

The Higgs couplings are compatible with the SM ones

... but the sweet taste from this great triumph might not last long

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded †Small-radius (large-radius) jets are denoted by the letter j (J).

Exhaustive NP searches with null results (so far)

Effective theories: bottom-up

- Effective Lagrangians: model-independent description of new physics in the presence of a mass gap
- Truly global fit to new physics now possible (EWPD plus LHC data -Higgs and otherwise-)
 - Ciuchini, Franco, Mishima, Silvestrini ('13); Blas, Chala, J.S. ('13, '15); Pomarol, Riva ('14); Falkowski, Riva ('15); Buckley, Englert, Ferrando, Miller, Moore, Russell, White ('15); Berthirer, Trott ('15), ...
- Map experimental (pseudo)observables to the Wilson coefficients in the effective Lagrangian to obtain all the experimental information in a model independent way
- Efforts to extend to NLO already on the way (see Passarino

and Gomez-Ambrosio's talk)

Ghezzi, Gomez-Ambrosio, Passarino, Uccirati ('15), Hartmann, Trott ('15), David, Passarino ('15), Boggia, Gomez-Ambrosio, Passarino ('16) ...

Effective theories: top-down

A complementary approach is to consider specific UV completions

- Correlations among Wilson coefficients in specific models (eventually observable in data)
- Give up model-independence? Not if all models considered

$$egin{aligned} \mathcal{L}(\phi,\Phi) \ & ---- & ext{Matching} \ \mathcal{E} & \mathcal{L}_{ ext{eff}}(\phi,\mu=M_{\Phi}) \ & \downarrow & ext{RGE} \ & \mathcal{L}_{ ext{eff}}(\phi,\mu=E_{exp}) \end{aligned}$$

 Goal: Generate a UV/IR dictionary (map all possible UV completions of the SM to the Wilson coefficients of the SM effective Lagrangian)

Outline

- UV/IR tree-level dictionary
- UV/IR one-loop dictionary
 - Effective Lagrangian at one loop: functional methods and matching
 - Matchmaker: automated one-loop matching in effective theories
 - Spin-offs
- Conclusions and outlook

Tree-level dictionary (non-mixed contributions)

New Quarks:

F. Aguila, M. Perez-Victoria, J.S., JHEP (00)

$Q^{(m)}$	U	D	$\begin{pmatrix} U \\ D \end{pmatrix}$	$\begin{pmatrix} X \\ U \end{pmatrix}$	$\begin{pmatrix} D \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ U \\ D \end{pmatrix}$	$\begin{pmatrix} U \\ D \\ Y \end{pmatrix}$
isospin	0	0	1/2	1/2	1/2	1	1
hypercharge	2/3	-1/3	1/6	7/6	-5/6	2/3	-1/3

New Leptons:

F. Aguila, J. Blas, M. Perez-Victoria, PRD (08)

Leptons	N	Е	$\binom{N}{E^-}$	$\binom{E^-}{E^{}}$	$\begin{pmatrix} E^+ \\ N \\ E^- \end{pmatrix}$	$\begin{pmatrix} N \\ E^- \\ E^{} \end{pmatrix}$
Notation			Δ_1	Δ_3	Σ_0	Σ_1
$SU(2)_L \otimes U(1)_Y$ Spinor	1 ₀ Dirac or Majorana	1 ₋₁ Dirac	2 _{-(1/2)} Dirac	2 _{-(3/2)} Dirac	3 ₀ Dirac or Majorana	3 ₋₁ Dirac

New Vectors:

F. Aguila, J. Blas, M. Perez-Victoria, JHEP (10)

Vector	\mathcal{B}_{μ}	\mathcal{B}^1_μ	\mathcal{W}_{μ}	\mathcal{W}^1_μ	\mathcal{G}_{μ}	\mathcal{G}^1_μ	\mathcal{H}_{μ}	\mathcal{L}_{μ}
Irrep	$(1,1)_0$	$(1,1)_1$	$(1, Adj)_0$	$(1, Adj)_1$	$(\mathrm{Adj},1)_0$	$(Adj, 1)_1$	$(\mathrm{Adj},\mathrm{Adj})_0$	$(1,2)_{-\frac{3}{2}}$
Vector	\mathcal{U}_{μ}^2	\mathcal{U}_{μ}^{5}	\mathcal{Q}^1_μ	\mathcal{Q}_{μ}^{5}	\mathcal{X}_{μ}	\mathcal{Y}^1_μ	\mathcal{Y}_{μ}^{5}	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{2}}$	$(3,2)_{\frac{1}{2}}$	$(3,2)_{-\frac{5}{2}}$	$(3, Adj)_{\frac{2}{3}}$	$(\bar{6},2)_{\frac{1}{6}}$	$(\bar{6},2)_{-\frac{5}{2}}$	

New Scalars:

J. Blas, M. Chala, M. Perez-Victoria, J.S., JHEP (15)

Colorless Scalars	S	\mathcal{S}_1	\mathcal{S}_2	φ	Ξ_0	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_0$	$(1,1)_1$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_0$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
Colored Scalars	ω_1	C	ω_2	ω_4	Π_1		Π_7	ζ
Irrep	$(3,1)_{-\frac{1}{3}}$	(3,	$1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	(3, 2)	$\frac{1}{6}$ (;	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$
Colored Scalars	Ω_1	2	Ω_2	Ω_4	Υ		Φ	
Irrep	$(6,1)_{\frac{1}{3}}$	(6, 1	$(1)_{-\frac{2}{3}}$	$(6,1)_{\frac{4}{3}}$	(6,3)	$\frac{1}{3}$ (8	$(8,2)_{\frac{1}{2}}$	

Tree-level dictionary (mixed contributions)

Mixed contributions: J. Blas, M. Chala, J.C. Criado, M. Perez-Victoria, J.S., to appear soon

• Dimensionful couplings imply that particles with different spins can simultaneously contribute to \mathcal{L}_6 at tree level

$$\kappa \phi_1 \phi_2 \phi_3 + \kappa' V^{\mu} D_{\mu} \phi + \kappa'' V^{\mu} V'_{\mu} \phi + \dots$$

 We are currently classifying and computing all possible contributions

 Only a subset of the representations in the previous list contributes

One-loop UV/IR dictionary

- Many contributions to the effective Lagrangian can be only generated at the quantum level
- Even contributions that can potentially arise at tree-level only appear at loop level in specific models
- The dictionary should be extended to one loop if we want to account for these cases
- The number of possibilities increases dramatically: automation seems compulsory

Functional methods and matching

- An interesting attempt has been recently made using functional methods Henning, Lu, Murayama ('14); Gaillard ('86); Cheyette ('86)
- There has been a great deal of developments in the last
 year:
 Henning, Lu, Murayama ('14);
 Drozd, Ellis, Quevillon, You ('15)
 - Initial attemps were not complete in the case of linear couplings to heavy states
 F. Aguila, Z. Kunszt, J.S. ('16)
 - The missing terms are local and can only be recovered by matching, which can be performed diagramatically Anastasiou, Lazopoulos, J.S. or by functional methods Henning, Lu, Murayama ('16);
 Ellis, Quevillon, You, Zhang ('16)

- We are developing an automated tool to perform tree-level and one-loop matching of arbitrary theories into arbitrary effective Lagrangians
- Based on standard, well-tested tools (FeynRules, QGRAF, FORM, Mathematica, Python)
- Flexible (from full matching to specific operators), fully automated and general
- Unified treatment (effective theory just another model)
- Off-shell matching with (initially) massless particles in the effective theory (e.g. unbroken phase of the SM)

- Model Implementation: FeynRules. Feynman rules are automatically computed and the QGRAF model written.
- A Python engine runs QGRAF to generate Feynman diagrams and compute the amplitudes. Amplitudes are automatically manipulated with FORM.
- The FORM code performs the corresponding Dirac algebra, momentum expansion, partial fractioning, ibp identities, ..., to obtain the amplitude in a useful form
- The FORM output is fed into Mathematica to perform the actual matching

- · Some issues we have to deal with:
 - Generation of redundant and evanescent operators
 - Treatment of γ_5
- Cross-checks:
 - Gauge invariance
 - Cancellations of IR divergencies
 - Comparison with known examples

- Status:
 - First version: SM effective Lagrangian
 - Bosonic operators: finished
 - Two-fermion operators: almost finished
 - Four-fermion operators: in progress
- Expected time-line:
 - First complete version: spring 2016
 - First public version: summer 2016
 - Second version with extended matching: end 2016

- Bonus:
 - As a by-product of our method we will obtain an independent calculation of the:
 - SM effective Lagrangian RGE, from the UV divergencies of the effective theory calculation (which can be related to the IR divergencies of the full theory side calculation)
 - Translation between arbitrary operator bases

effective theories

- C. Anastasiou, A. Lazopoulos, J.S., in progress
- F. Aguila, Z. Kunszt, J.S., 1602.00126
- Sample result: T parameter from charge 2/3 vector-like quark singlet $\mathcal{L}_T = \overline{T}(\mathrm{i} \cancel{\mathcal{D}} M)T \left[\lambda_T \ \overline{q_L} \widetilde{\phi} T_R + \mathrm{h.c.}\right]$
 - Computed in the physical basis (full model)

$$\Delta \hat{T} = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

- M. Carena, E. Ponton, J.S.,
- C. Wagner ph/0607106
- Computed in an EFT approach (3 steps)
 - Matching at M
 - Running to m_t
 - Matching at m_t

effective theories

- C. Anastasiou, A. Lazopoulos, J.S., in progress
- F. Aguila, Z. Kunszt, J.S., 1602.00126
- Sample result: T parameter from charge 2/3 vector-like quark singlet
 - Matching at M: off-shell (3 independent operators)

$$\mathcal{O}_1 = |\phi^{\dagger} D_{\mu} \phi|^2$$
 $\mathcal{O}_2 = \phi^{\dagger} \phi \partial^2 \phi^{\dagger} \phi$ $\mathcal{R} = \phi^{\dagger} \phi \phi^{\dagger} D^2 \phi$

• Compute $\langle H_1H_1^*H_2H_2^*\rangle$ in full and effective theories

$$\alpha_1^{(1l)} = \frac{N_C |\lambda_T|^2}{16\pi^2 M^2} \left(\frac{1}{2} \lambda_t^2 - \frac{1}{2} |\lambda_T|^2 \right),$$

$$\alpha_2^{(1l)} = \frac{N_C |\lambda_T|^2}{16\pi^2 M^2} \left(\frac{3}{2} \lambda_t^2 - \frac{1}{3} |\lambda_T|^2 \right),$$

$$\alpha_R^{(1l)} = \frac{N_C |\lambda_T|^2}{16\pi^2 M^2} \left(-\frac{1}{2} \lambda_t^2 + \frac{1}{2} |\lambda_T|^2 \right),$$

$$\Delta \hat{T} = -v^2 \alpha_1$$

$$\Delta \hat{T} = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

effective theories

C. Anastasiou, A. Lazopoulos, J.S., in progress

F. Aguila, Z. Kunszt, J.S., 1602.00126

• Sample result: T parameter from charge 2/3 vector-like quark singlet

(Alonso), Jenkins, Manohar, Trott ('13);
Elias-Mir, Espinosa, Masso, Pomarol ('13)

• Running to \mathbf{m}_{t} : tree-level operators relevant $\Delta \hat{T} = -v^2 \alpha_1$

$$16\pi^2 \frac{\mathrm{d} \alpha_1}{\mathrm{d} \log \mu} = 8N_C \lambda_t^2 \alpha_{\phi q}^{(1)} + \dots ,$$

$$\Delta \hat{T} = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

$$\mathcal{O}_{\phi q}^{(1)} = i\phi^{\dagger} D_{\mu} \phi \bar{q} \gamma^{\mu} q \qquad \qquad \alpha_{\phi q}^{(1)} = \frac{|\lambda_T|^2}{4M^2}$$

$$\alpha_1(m_t) = \alpha_1(M) - \frac{N_C \lambda_t^2 \alpha_{\phi q}^{(1)}(M)}{2\pi^2} \log\left(\frac{M}{m_t}\right)$$

$$= \frac{N_C}{32\pi^2 M^2} \left[\lambda_t^2 |\lambda_T|^2 - |\lambda_T|^4 - 2\lambda_t^2 |\lambda_T|^2 \log\left(\frac{M^2}{m_t^2}\right) \right].$$

effective theories

- C. Anastasiou, A. Lazopoulos, J.S., in progress
- F. Aguila, Z. Kunszt, J.S., 1602.00126
- Sample result: T parameter from charge 2/3 vector-like quark singlet
 - Matching at m_t: top contribution with anomalous tree-level

couplings

THE RESERVE TO SHARE THE PARTY OF THE PARTY

$$g_{W_3t_Lt_L} = g_{W_3t_Lt_L}^{SM} \left[1 - 2v^2(\alpha_{\phi q}^{(1)} - \alpha_{\phi q}^{(3)})\right] = g_{W_3t_Lt_L}^{SM} \left(1 - \frac{|\lambda_T|^2 v^2}{M^2}\right),$$

$$g_{W_1t_Lb_L} = g_{W_1t_Lb_L}^{SM} \left[1 + 2v^2\alpha_{\phi q}^{(3)}\right] = g_{W_1t_Lb_L}^{SM} \left(1 - \frac{|\lambda_T|^2 v^2}{2M^2}\right).$$

$$\hat{T}(m_t^+) = \frac{N_C}{32\pi^2} \lambda_t^2 \left(1 - \frac{|\lambda_T|^2 v^2}{M^2}\right) = \hat{T}_{SM} + \Delta \hat{T}_{SM}$$

$$\Delta \hat{T}(m_t^-) = -v^2 \alpha_1(m_t) + \Delta \hat{T}(m_t^+) = \frac{N_C}{32\pi^2} \frac{v^2}{M^2} \left[|\lambda_T|^4 + 2\lambda_t^2 |\lambda_T|^2 \left(\log \frac{M^2}{m_t^2} - 1 \right) \right]$$

• Summary:

- The goal is to complete the UV/IR dictionary: direct map between UV theories and experimental observables
- The tree level dictionary is complete
- Automated calculation of one-loop (and tree-level) matching conditions is well advanced
- MatchMaker: General, fully automated and flexible code to match arbitrary models to arbitrary effective Lagrangians
- The ultimate goal is to use the code to classify and compute the complete one-loop dictionary between UV completions and the SM effective Lagrangian