ITER Central Interlock System

Fast Machine Protection ITER

CIS Team

NI Big Physics Summit

February 2016

china eu india japan korea russia usa the way to new energy...

2

Attractions:

- unlimited fuel
- no CO₂ or air pollution
- intrinsic safety
- no radioactive ash or long-lived nuclear waste,
- cost will be reasonable *if* we can get it to work

Disadvantages:

not yet available

walls gets activated (but could recycle after 100 years)

China, Europe, India, Japan, Korea, Russian Federation and the United States of America signed the ITER Agreement on 21 November 2006 in the Elysee Palace, Paris

"For the benefit of mankind"

The idea for ITER originated from the Geneva Superpower Summit in 1985 where Presidents Gorbachev and Reagan proposed international effort to develop fusion energy...

... "as an inexhaustible source of energy for the benefit of mankind".

D

C

F

E

G

Superconducting Magnets

Interaction of strong magnetic fields 5T and up to 17 MA plasma

ITER Interlocks
 ITERinterlocks

Stopping an aircraft carrier at 150km/h in 500m?powering interlocks manage the same energy,51 GJ, to protect **#ITER**

Plasma Heating & FuellingSystems

NI Big Physics Summit

The Plasma

• Energy, Temperature – Internal Components

Plasma Disruptions

Vacuum, Cryogenic and Cooling Water Systems

Remote Handling

ITER Procurement Strategy

A unique feature of ITER is that almost all of the machine will be constructed through *in kind procurement* from the Members

In-fund and in-kind procurement

17

Interlocks at ITER

Future fusion power plants will be only possible if ITER proves that the reactor and associated systems can run long plasma discharges reliably.

Interlocks are the instrumented functions of ITER that protect the machine against failures of the plant system components or incorrect machine operation.

<u>Consequences</u>

The ITER interlocks shall:

- 1. Protect the tokamak integrity
- 2. Maximize scientific operation time
- 3. Anticipate and test interlock solutions for future industrial fusion reactors

ITER Defense-in-depth Approach

The Interlock Control System ensures that no failure of the conventional ITER controls can lead to a serious damage of the machine integrity or availability.

NI Big Physics Summit

Central Interlocks: Plant Systems

iter

interlocks

ICS – Complex architecture

Domestic Agencies

R

ITER Interlocks

ITER - Interlocks

NI Big Physics Summit

problems #ITER

How to integrate the most complex

machine ever?Communication is

the Key! a good interface to soften

Photo News

NFRI (KOREA 한국사업단

Board

February 2016

Fast Machine Protection

Integrity	Performance	Availability	Technical Solution	Configuration
Up to 3IL-3	> 100ms	Standard	Siemens S7-400-F	Standard PIS
Up to 3IL-3	> 100ms	High Availability	Siemens S7-400-FH	Fully Fault-Tolerance
Up to 3IL-3*	< 100ms	???	???	???

interloc

NI Big Physics Summit

Requirements

Some central interlock functions require a response time which cannot be implemented by the chosen PLC architecture.

Fast Local functions

Standardized architecture Standard sensors Custom electronics

Central functions

Flexible solution Fiber Optics Comm.

- Response time below 1ms
- Availability (99.9%)
- reliability (99,6% in 16h)
- Integrity level up to PFH < 10⁻⁷
- Fail-safe solution
- Harsh environment

Plant Interlock Systems Fast architecture

Fast Interlock Controller

- Highly reliable and available
- Facilitate redundancy
- Magnetic and radiation environments.
- Requires different kinds of I/O :
 - 24 V digital signal
 - Accessible from the same FPGA
- Reaction time doesn't require extremely fast FPGA loops

NI Compact RIO

Category NI CompactRIO Product	MTBF @ 25 °C (Hours)					
Controllers						
NI cRIO-9025	293 538					
NI cRIO-9074	322 849					
NI cRIO-9075	1 065 385					
Chassis						
NI cRIO-9118	815 216					
NI cRIO-9159	826 266					
NI cIRO-9144	458 557					
I/O Modules						
NI 9205	2 419 708					
NI 9476	1 091 425					
NI 9477	5 793 372					
NI 9425	3 090 576					
NI 9426	3 125 291					
System						
NI cRIO-9159						
NI 9205	556,746					
NI 9477						

Integrity

Hardware Integrity Architecture

IEC 61508 Part 2 Table 3

Architectural constrains on

"complex" devices

IEC 61508

Total Failure rate λ

Safe Detected	Dangerous Detected
Safe Undetected	Dangerous Undetected
	λ

SFF = 1 - $\frac{\lambda^{-2}}{\lambda^{TOTAL}}$

Safe failure fraction	Hardware fault tolerance (see note 2)							
	0	1	2					
< 60 %	Not allowed	SIL1	SIL2					
60 % - < 90 %	SIL1	SIL2	SIL3					
90 % - < 99 %	SIL2	SIL3	SIL4					
<u>></u> 99 %	SIL3	SIL4	SIL4					
NOTE 1 See 7.4.3.1.1 to 7.4.3.1.4 for details on interpreting this table.								
NOTE 2 A hardware fault tolerance of N means that N + 1 faults could cause a loss of the safety function.								
NOTE 3 See annex (C for details of hov	v to calculate safe	failure fraction.					

Failure Mode, Effects, and Diagnostics Analysis (FMEDA)

Classifies each failure mode discovered as:

- Dangerous or Safe
- Detectable or Undetectable.

Determine

- Safe Failure Fraction
- Diagnostics Coverage
- Probability of Failure per Hour

Metric	NI 9205	NI 9425	NI 9401	NI 9477	NI 9159
$\sum \lambda_s$	1.877E-08	3.858E-08	4.308E-09	2.510E-08	8.873E-09
$\sum \lambda_D$	3.966E-07	4.943E-07	2.545E-07	1.656E-07	1.078E-06
$\sum \lambda_{DD}$	0.000E-00	0.000E-00	0.000E-00	0.000E-00	5.735E-07
$\sum \lambda_{DU}$	3.966E-07	4.943E-07	2.545E-07	1.656E-07	5.048E-07
SFF	4.25%	7.24%	1.66%	13.16%	53.57%
DC	0.00%	0.00%	0.00%	0.00%	53.19%
PFH	3.966E-07	4.943E-07	2.545E-07	1.656E-07	5.048E-07

Fast Controller Solution

Fast PIS – FPGA core application

Inter-chassis Communication

- SPI communication
- 64 data frame
- Status:
 - Inputs
 - Outputs
 - Voter
 - Diagnostics
- Integrity measures:
 - Consecutive number
 - CRC 16 bits

Chassis 2

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Legend:
Con	secutiv	e num	ıber (5	bits)	PU	СН	СС	RP	11	12	13	01	02	TE	V01	Consecutive number CN (5 bits)
																Power Up DC PU
																Comm Host CH
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Comm chassis CC
VA1	VD1	VO2	VA2	VD2	VO3	VA3	VD3	V04	VA4	VD4	V05	VA5	VD5	V06	VA6	Remote Power RP
																Input DC1 I1
																Input DC2 I2
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	Input DC3 I3
VD6	V07	VA7	VD7	V08	VA8	VD8	V09	VA9	VD9	VO10	VA10	VD10	V011	VA11	VD11	Output DC1 O1
																Output DC2 O2
																Temp TE
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	Voter Output n Von
							CRC (1	6 bits)								Voter Alarm n Van
																Voter DC n VDn

Fast PIS – Labview Code

https://svnpub.iter.org/codac/iter/c odac/dev/units/m-cis-pisfc

The interlock critical data of the F-PIS or F-CIS module will be transmitted via hardwire links.

The interlock non-critical data (diagnostics) and the communication with both interlock desk and engineering workstation would be done using ethernet CIN-P connected to an attached Fast Controller Server.

The server will be also used to send all the field data to CODAC (e.g. via PON)

The time synchronization for the fast controller will used the TCN

Reference Documentation:

FMEDA Analysis for the 2003SD Double Decker Diagnostic and Improvement of the Safe Failure Fraction Figures (SFF) (N62LS6)

Fast PIS – Features

Generic fast PIS controller solution:

- Hardware configuration according to IEC 61508
 - Reliability and integrity figures available
 - PFH calculation tool available for integrity
- Software preconfigured and tested
 <u>Additional configuration can be defined and tested if requested</u>
- Integration with the central system
 - Critical signal: FPGA to FPGA, using Manchester coding via fiber optic
 - Non critical communication with CIS and CODAC via a PC HOST OPC UA

Conf.	Inputs	Outputs	PFH	SIL consump. (IEC 61508)	SFF	Response Time (min / MAX)
А	3x Al	2x 24V	1.324 E-8	13.2% of SIL 3	85.47 %	41 / 89 μs
В	3x 24V	2x 24V	1.322 E-8	13.2% of SIL 3	85.47 %	143 / 643 µs
С	3x TTL	2x TTL	1.597 E-8	16% of SIL 3	85.47 %	5 / 20 μs

Note: the requirement for SIL-3 according to IEC 61508 is SFF>90%, There is no SIL-3 COTS with a response time below 1 ms

ITER - Interlocks

Integrity	Performance	Availability	Technical Solution	Configuration
Up to 3IL-3	> 100ms	Standard	Siemens S7-400-F	Standard PIS
Up to 3IL-3	> 100ms	High Availability	Siemens S7-400-FH	Fully Fault-Tolerance
PFH <10 ⁻⁷	< 100ms	Standard	NI Compact Rio	Double Decker

interloc

NI Big Physics Summit

Fast interlock for SC circuits

Chassis 2

Central Fast Controller

Central Functions: Hardwired connections using CIN-P infrastructure

Module	λ _{DU}	λ _{DD}	λD	λs
9159 Voter	1.6080E-07	8.7790E-07	1.0387E-06	6.8440E-08
9401 Comm	2.7880E-08	1.9480E-07	2.2268E-07	3.6180E-08
9401 TTL MC Input (from PIS)	1.7350E-08	1.6070E-07	1.7805E-07	2.7250E-08
9401 TTL MC Output (to PIS)	2.6580E-08	1.5580E-07	1.8238E-07	2.7630E-08
9401TTL DI/DO Diag	2.8450E-08	1.7120E-07	1.9965E-07	0.0000E+00
Cumulative	2.89420E-07	1.73160E-06	2.02102E-06	1.59500E-07

PFH	% 3IL-3	%3IL-2
1.540E-08	15%	1.5%

MC transmission time (2 times of encoding, 2 times of decoding)	25.6 μs
Time delay of FO cable (Distance = 1 Km, Round trip)	9.8 µs
Time delay of FO converters (2 for path from PIS to CIS, 2 for path from CIS to PIS)	0.28 μs
Time to process input/output and Diagnostics	5 μs ~ 55 μs
Response time	40.68 μs ~ 90.68 μs

Central Function Communication - MC

- Manchester Code communication
 - 96 bit for Inter-chassis comm
- Standard frame for plant systems:
 - 64 bits data frame
- Media Converter TTL FO
 - MTBF 185529 hours

Analogue Value Communication

	Bits	Real data bits
Start Of Frame	2	X
Counter	5	5
Туре	3	3
Number of the signal received	8	8
Value	32	32
CRC-16	16	16
Total	66	64

Digital Value Communication

	Bits	Real data bits
Start Of Frame	2	X
Counter	5	5
CBS Level 1	8	8
CBS Level 2	8	8
# of Event or Action	24	24
Reserved	1	X
CRC-16	16	16
Total	64	61

PPM - FPGA core application

Conclusions and Outlook

- ❑ The project launched in January 2013 has so far produced a PIS controller design over the base of the National Instrument's cRIO with the required capabilities:
 - Availability (99.9%) and reliability (99,6%)
 - Integrity level up to PFH < 10-7
 - Fail-safe solution (deterministic state in case of internal error)
 - Response time of 100µs
- □ First real applications:
 - Fast interlock for the superconducting coil power supplies (FAT of the Correction Coils Master Controller in December 2015 and for the poloidal field coils, central solenoid and toroidal field coils power converters during 2016)
 - CIS v1

Thank you...

BRANNIN DESIGNAL

Several development tools are involved into the development of fast CIS runtime Application:

- LabVIEW for FPGA is used to develop and compile the FPGA code
- The OPC UA driver and the DMA FIFO for the data exchange between the FPGA and Win CC OA are configured under Linux environment with the necessary tools.
- Win CC OA is used to implement the archiving and monitoring of the CIS Fast controller from CIS Desk

Fast PIS Hardware Architecture

Generic fast PIS controller solution:

Double-Decker System

The 2003 Double Decker architecture showed the best overall performance in terms of availability and reliability. The voter is implemented in the FPGA; hence it does not require en external voter unit and thus enables capabilities that can provide a higher level of safety. The two chassis allow for a diagnostic strategy that will increase the SFF. Also, this solution can be adapted as a F-CIS module solution.

Compact Rio Modules for Fast Interlock Controllers

Description	Reference
NI 9159, 14-slot CompactRIO Chassis, LX 110 FPGA, MXIe	781315-01
NI 9205 32-Ch ±200 mV to ±10 V, 16-Bit, 250 kS/s Al Module	779357-01
NI 9264 16-Ch ±10 V, 16-Bit, 25 kS/s Analog Output Module	780927-01
NI 9477 32-Ch 24 V, 8 μs, Sinking DO Module	779517-01
NI 9425 32-Ch 24 V, 7 μs, Sinking DI Module	779139-01
NI 9476 32-Ch 24 V, 500 μs, Sourcing DO Module	779140-01
NI 9426 32-Ch 24 V, 7 μs, Sourcing DI Module	780030-01
NI 9401 8-Ch, 5 V/TTL High-Speed Bidirectional Digital I/O Module	779351-01

Prototypes

PPM Inter-chassis Communication

Field	Bits
Start Of Frame	2
Counter	5
PU	1
СН	1
RP	1
TE	1
MDn	14
On	55
CRC-16	16
Total	96