

PERLE @ Orsay

Walid Kaabi-LAL/CNRS

CERN, June 21st 2017

Motivations:

Why an ERL?

- Accelerator R&D at its best.
- A clever concept: Accelerate electrons to high energy, use the beam, decelerate and recover the beam energy for machine operation → Saving energy is a key word for future machine construction.
- Compact accelerator with high performances that need smaller investment (site area, cryogenic plant, RF source...)

Why @ Orsay?

- Develop and acquire expertise in design and operation of ERL.
- Involvement of local accelerator experts around an ambitious project.
- Opportunity to host the first superconductive R&D facility in Paris-Saclay campus.

Motivations:

Why PERLE?

- The opportunity to work within an international collaboration with expert in ERL design and operation.
- Technical challenges imposed by the machine design:
 - Multi-turn recirculation,
 - High current operation,
 - New SR cavities to be tested with beam,
 - beam stability (intensity, position and size) in acceleration and deceleration phases,
 - Injector versatility,
- Validation of key design choice for future machine.
- Compact but powerful machine that could allow many applications: (controlled quench tests in SC cables and magnet, Beam diagnostics development, injector studies, test facility for cavities & cryomodules, facility for gamma ray generation via Compton backscattering).

PERLE collaboration:

- The PERLE @ Orsay collaboration includes today CERN, JLAB, Daresbury/Liverpool University, BINP and LAL/IPNo.
- We are open to new collaborators.
- The collaboration signed the PERLE Conceptual Design Report (CDR) submitted for publication in J. Phys. G
- LAL organized PERLE @ Orsay workshop In February 23-24th.
- Next step will be the redaction of PERLE Technical Design Report (TDR).

PERLE collaboration:

For more details:

- the PERLE CDR [arXiv:1705.08783] →
- the indico site of PERLE Workshop held in February 2017 at Orsay

↓ https://indico.lal.in2p3.fr/event/3428/

PERLE

Powerful Energy Recovery Linac for Experiments

Conceptual Design Report

to be published in J.Phys.G

CELIA Bordeaux, MIT Boston, CERN, Cockcroft and ASTeC Daresbury, TU Darmstadt, U Liverpool, Jefferson Lab Newport News, BINP Novosibirsk, IPN and LAL Orsay

May 13th, 2017

PERLE @ Orsay:

Basic parameters for PERLE:

Target Parameter	Unit	Value
Injection energy	MeV	5
Electron beam energy	MeV	400
Normalised Emittance yexx	mm <u>mrad</u>	6
Average beam current	mA	15
Bunch charge	рC	320
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

PERLE in the global landscape:

Courtesy to Chris Tennant

PERLE Layout:

Alex Bogacz

Cost-effective magnet solution:

Pierre-Alexandre Thonet

- Longer and curved bending magnets
- 2 different magnet types with same cross section (only the length changes)
- Only 1 magnet per bend with a deflection of 45°
- Reduction of magnet number (24 compared to 48), could help to reduce cost

Arc	Energy [MeV]	Count	angle [deg]	в [T]	L [mm]	Curv. radius [mm]	Pole gap [mm]	GFR width [mm]	
#1	80	4	45	0.45	456	596	±20	±20	
#2	155	4	45	0.87	456	596	±20	±20	MBA
#3	230	4	45	1.29	456	596	±20	±20	
#4	305	4	45	0.85	912	1191	±20	±20	
#5	380	4	45	1.06	912	1191	±20	±20	MBB
#6	455	4	45	1.27	912	1191	±20	±20	

PERLE magnet design (dipoles and quadrupoles):

70 dipoles 0.45-1.29 T

+- 20 mm aperture, l=200,300,400 mm

May be identical for hor+vert bend

7A/mm2 (in grey area) water cooled

114 quadrupoles max 28T/m

Common aperture of 40mm all arcs

Two lengths: 100 and 150mm

DC operated

P Thonet, A Milanese (CERN), C Vallerand (LAL), Y Pupkov (BINP)

1 pass up + 1 pass down optics:

More details in yesterday's A. Bogacz presentation

Pass-1 'up'

Magnets inventory:

C. Vallerand, P.A. Thonet & A. Milanese

Summary of magnetic element features

Туре	Magnetic length (mm)	Number of magnets	Yoke profile	Maximum magnetic field (T)/Gradient (T/m)
Arc dinalas	912	12	Curved sector	1.3
Arc dipoles	456	12	Curved sector	1.3
Spreader	200	16	To be defined	0.95
spreader/	300	20	To be defined	1.3
dinolos	400	2	Curved sector	0.95
dipoles	50	8	Straight	0.18
Quadrupolos	100	102	Straight	29
Quadrupoles	150	12	Straight	29

Bends: 70 Quads: 114

Electron source and injector:

Boris Militsyn

- Preferred Concept: Photocathode, DC Gun with SRF accelerator (buncher & Booster),
- Laser allows flexible bunching sequence,
- Nominal repetition rate 40.1 MHz (20th sub-harmonic of 801.56 MHz),
- Nominal bunch charge: $2 \ 10^9 \text{ e}$ = $320 \text{ pC} \rightarrow 320 \text{ pC} \times 40 \text{ MHz}$ = 12.8 mA.

DC Gun

Injector versatility:

One purpose of PERLE is to test SRF cavities/cryomodules with beam.

 \rightarrow Thanks to the flexibility of laser pulse driven photocathode, sub-harmonics are used to test different frequencies with PERLE beam. Two interesting sub harmonics are found:

¥				
Harmonic	Frequency (MHz)			
30	325			
37	401			
39	422			
46	499			
60	650			
65	704			
74	802			
88	953			
120	1300			

 $f_0 = 10.835 \text{ MHz}$

Harmonic	Frequency (MHz)
29	352
33	401
58	704
66	802
107	1300

 $f_0 = 12.146 \text{ MHz}$

Injector versatility:

@ CERN

International

Programme	Frequency (MHz)	Programme	Frequency (MHz)	
LHC, spare and more	401 MHz	ILC, X-FEL, LCLS-2,	1,300 MHz	
LHC upgrade	200 MHz, 802 MHz	CBETA, CERL, MESA		
		PIP-II	650 MHz	
HIE-ISOLDE	101 MHZ	SNS	805 MHz	
HL-LHC crab cavities	401 MHz			
Linac 4 (NC)	352 MHz	PERLE	802 MHZ	
	552 WI 12	ESS	352 MHz, 704 MHz	
SPL (ESS)	704 MHz		422 MHz	
LHeC, FCC-he	802 MHz	ennic	953 MHz	
		JLAB MEIC		
FCC-ee, FCC-hh 401 MHz & 802 MHz			500 MHz	

Main cavity parameters

Parameter	Unit	Value
Frequency	MHz	801.58
Number of cells		5
Iris/tube ID	mm	130
L _{act}	mm	917.9
$R/Q = V_{eff}^{2}/(\omega \cdot W)$	Ohm	524
G	Ohm	274.7
R/Q·G/cell		143940
$\kappa_{ }$ (2mm rms bunch length)	V/pC	2.74
E _{pk} /E _{acc}		2.26
B _{pk} /E _{acc}	mT/(MV/m)	4.20
k _{cc}	%	3.21

Cavity fabrication status:

802 MHZ Nb and Cu prototype cavities progressing well

802 MHz deep-drawing die set and machinin fixtures (completed)

F. Marhauser Status 05-25-2017

Deep-drawn 802 MHz Nb and Cu half-cells (Status April '17)

NbTi flanges (completed)

Rolling of beam tubes and EBW before machining (completed), beam tubes are being machined (to be completed soon, 05/17) RF test hardware for OD = 6.5" flanges available

Cryomodule requirement for PERLE:

Several cryomodule requirements could be listed for PERLE, and some of them are very challenging. They are of two types:

- 1. The classical challenges imposed by SRF:
 - Limit as much as possible heat transfer
 - Take into account all mechanical constraints
 - Design allowing an easy assembly procedure
 - ... and as usual, optimize for cost !

2. The additional constraints coming from the cavities operated in the ERL mode and CW/high current operation mode:

- High CW cryo loads
- Low level of vibration, and damping of them
- Excellent magnetic shielding (high Q₀)
- Accurate cavity alignment

Specific constraints in PERLE cryomodule:

High cryo loads generated by the CW mode and high current operation

 \rightarrow A large number of significant dynamic heat loads in an operation mode where dynamic loads are >> static loads

- Cavity
- HOM load
- CW input couplers
- Design question/optimization points to find for cryostat/cryoplant: cryo load
 - Thermal shield temperature optimum
 - How to efficiently extract HOM power? at what T°?
 - Cryo load varies a lot between RF on/off : cryoplant flexibility is required
 - Cavity optimum operating temperature: cost vs cavity performances vs helium bath stability
 - How to cool the cavities (series/parallel) in order to insure "magnetic hygiene" (really an issue for high $Q_0 @ 802 \text{ MHz}$?)

Site to host PERLE:

Possible use of a 2nd levels for RF source and power supplies installation

Site to host PERLE:

Site description:

- The experimental hall is equipped with crane, electricity and is partially shielded
- Water cooling circuit could be shared with other machines nearby.
- Possibility to install the RF source and power supplies in a different level than the accelerator
- A large area of ground have the required resistance to allow installation of PERLE.
- A control room that overlooks the hall could be used for PERLE.
- No Cryogenic plant around, has to be built.
- Space available for experiments.
- Support for the infrastructure is fully assured.

Next steps...

Important R&D effort still to be done in several fields:

- Beam Dynamics
- Lattice and optics
- Electron source and injection
- Cavities, HOM study and cryomodule design
- Magnets and power supplies
- Beam dumps
- RF power source
- Cryogenics
- Beam instrumentations
- LLRF
- Control software system
- Shielding and safety system

Many Thanks to all the collaboration members for their big efforts! Welcome to all the new collaborators that would like to join!

Thank you for your attention!