# WG5: ERL Applications Summary

## Peter McIntosh (CI/STFC Daresbury Laboratory) Ivan Konoplev (JAI/Oxford University)



# WG5: ERL Applications Programme

| Tue 20 <sup>th</sup> June  | Session 1                                                                                     |                                     | Application       |  |
|----------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|-------------------|--|
| 08:30 - 08:55              | LERF - New Life for the Jefferson Lab FEL                                                     | Chris Tennant (Jlab)                | FEL               |  |
| 08:55 – 09:20              | Novosibirsk ERL based FEL as User Facility                                                    | Vitaly Kubarev (BINP)               | FEL, THz, Compton |  |
| 09:20 - 09:45              | Asymmetric, Dual Axis Cavity for ERL: recent R&D and possible applications                    | Ivan Konoplev (JAI)                 | EUV, THz          |  |
|                            | Session 2                                                                                     |                                     |                   |  |
| 10:00 - 10:25              | Photon Science Exploitation of ALICE in<br>Biomedical Science                                 | Mark Surman (STFC)                  | FEL               |  |
| 10:25 - 10:50              | EUV ERLs for Semiconductor Integrated Circuit<br>Lithography                                  | Norio Nakamura (KEK)                | EUV               |  |
| 10:50 - 11:15              | Applications for CBETA at Cornell                                                             | Georg Hoffstaetter (Cornell)        | THz, Compton      |  |
| 11:15 – 11:40              | Applications by means of the accelerator technologies based on cERL                           | Hiroshi Kawata (KEK)                | Compton, Isotopes |  |
| Thur 22 <sup>nd</sup> June | Session 3                                                                                     |                                     |                   |  |
| 13:15 - 13:40              | ERL Upgrade Plans for the ARIEL e-Linac                                                       | Bob Laxdal (TRIUMF)                 | FEL, THz, Compton |  |
| Fri 23 <sup>rd</sup> June  | Session 3                                                                                     |                                     |                   |  |
| 08:30 - 08:55              | Generation of High-flux High-energy Ultra-short<br>Vortex Photon Beams from JLab ERL Facility | Shukui Zhang (Jlab)                 | Compton           |  |
| 08:55 – 09:20              | Nuclear Physics Experiments at Mesa                                                           | Kurt Aulenbacher (Mainz U)          | Polarised beams   |  |
| 09:20 - 09:45              | ERL developments for eRHIC                                                                    | Vladimir Litvinenko (Stony Brook U) | Cooling           |  |

## FEL, THz & Photon Applications

| Field    | Application                                | Group     | Energy<br>(MeV) | Current/Charge                          | Key<br>Parameters      | Size       | Critical<br>Performance<br>Needs?     | Challenges               |
|----------|--------------------------------------------|-----------|-----------------|-----------------------------------------|------------------------|------------|---------------------------------------|--------------------------|
| THz      | TD Spectrometry & Photochemistry           | BINP      |                 |                                         | 2.12THz                |            |                                       |                          |
|          | Optical Discharge                          | BINP      |                 |                                         | 2.3THz,<br>66ps pulses |            |                                       |                          |
|          | Material optical properties (ellipsometry) | BINP      |                 |                                         | C                      |            |                                       |                          |
|          | Biological irradiation                     | BINP      |                 |                                         | , att                  |            |                                       |                          |
|          | Detonation dynamics                        | BINP      |                 |                                         | 110                    |            |                                       |                          |
|          | Pump-probe                                 | BINP      |                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | کر<br>ک                |            |                                       |                          |
|          | Surface Plasmon Polaritons                 | BINP      |                 | 0                                       |                        |            |                                       |                          |
|          | Bessel Beams                               | BINP      |                 | ×0 `                                    |                        |            |                                       |                          |
|          | СВЕТА                                      | Cornell   | 135             | 500pC @ 10ps,<br>320mA, 4-pass          | 4THz                   | 35m x 15m  | Low ERL loss rate                     |                          |
| IR-FEL   | Spintronics (magnetoactive materials)      | BINP      | K               |                                         | λ=9.3um                |            |                                       |                          |
|          | ARIEL ERL Upgrade                          | TRIUNT    | 50              | 10mA                                    | λ=1 - 20um             |            | High brightness PI                    | RLA & ERL<br>switching   |
|          | LERF – Dark matter search                  | JLab      |                 | 60pC @ 3.3ps                            |                        | 60m x 5m   | Reduce backg'd<br>rad'n & beam loss   |                          |
|          | IR Microscopy – Cancer Diagnostius         | Daresbury | 30              | 80pC @ 0.1ps                            | λ=9.3um                | 40m x 25m  | FEL $\lambda$ and power               | FEL Stability            |
| Compton  | CBETA                                      | Cornell   |                 |                                         | 412keV,<br>0.4% BW     | 35m x 15m  | Low ERL loss rate                     |                          |
|          | Compact Los (Xy imaging)                   | KEK       | 20              | 58uA                                    | 6.9keV                 | 90m circ.  | Laser power                           |                          |
|          | LCS <sub>2</sub> -ray inaclear detection)  | KEK       | 350             |                                         |                        |            |                                       |                          |
| EUV      | Compact ERL                                | JAI       | 30              | 1A                                      |                        | 5m x 2m    | Small footprint                       | High current<br>injector |
|          | Industry ERL                               | КЕК       | 800             | 10mA, 60pC,                             | λ=13.5nm,<br>>10kW     | 200m x 20m | FEL stability,<br>Availability (>98%) |                          |
| Isotopes | <sup>99</sup> Mo/ <sup>99m</sup> Tc        | KEK       | 20-50           | <10mA                                   |                        |            |                                       |                          |

## **Particle & Nuclear Physics Applications**

| Field              | Application                                  | Group   | Energy<br>(MeV) | Current/Charge | Key<br>Parameters | Size | Critical<br>Performance<br>Needs? | Challenges           |
|--------------------|----------------------------------------------|---------|-----------------|----------------|-------------------|------|-----------------------------------|----------------------|
| Compton            | X-ray vortex photon beams (LERF)             | JLab    | 100             | 1mA            | 0.1 – 10keV       |      | LG Laser power                    | OAM characterisation |
|                    | γ-ray vortex beams (CEBAF)                   | JLab    | 12000           | 0.07           | 3.6GeV            |      |                                   |                      |
| Polarised<br>Beams | Low momenta characterisation                 | Mainz U | 155             | 150uA          |                   |      | Polarised electron<br>injector    |                      |
| Cooling            | Spin physics, imaging, strong colour physics | BNL     | 30              | 3.7nC          |                   |      | Polarised electron<br>injector    | SRF linac &<br>HOMs  |

# **ERL Needs & Challenges**

For THz, Compton, IR, EUV and X-Ray, NP and PP applications:

- Key performance requirements:
  - Stability areas, availability .....
- Challenges generating ERL output.
- Delivery mitigation strategies.
- Future application field priorities (demand):
  - THz
  - Compton
  - FEL
  - EUV
  - X-Ray
  - Nuclear Physics
  - Particle Physics

# **THz Applications**

Performance Requirements:

- High power & high spectral range is key requirement ideally upto 3THz.
- Broadband, short-pulse & high repetition-rate plus highly-monochromatic coherent THz are conflicting needs.
- Ideal would be to have the same ERL deliver both!
- High charge, high repetition rate, with good pulse-pulse stability is key ERL requirement.
- ELBE@HZDR delivers high-field pulses with 1nC bunches, providing 0.2THz to 5THz. Challenges:
- Jlab FEL generates ~1kW THz which presents beam-dynamics problems.
  - Electron beam performance impacts significantly on THz generated (bunch length, RF phase).
  - Difficult to generate consistent THz characteristics.
- THz transport over long distances, ideally should be close to ERL. Mitigation:
- The use of a THz cavity would generate a more consistent THz beam for users.
- For optimum THz transport, precise alignment and source-point tracking essential

   Jlab use a HeNe laser alignment system.

Demand:

- ELBE provides 6wk operation, every 6 months, factor of 3 over-subscribed!
- As storage rings move towards diffraction-limited performance, the availability of THz is expected to increase.

# **FEL Applications**

Performance Requirements:

- Machine stability cited as a primary requirement wavelength, power, beam pulse-pulse stability.
- High stability needed throughout the entire accelerator chain.

Challenges:

• Achieving required FEL stability.

Mitigation:

- Fast feedback systems: Laser, RF, FEL, temperature etc. Demand:
- ERLs can potentially achieve much higher repetition rates than a single-pass linear machine, and this is something which should be pursued at national lab level – particularly delivering hard x-rays, combined with a gamma ray Compton source.

# **EUV Applications**

Performance Requirements:

- High EUV power >10kW typically needed, with >98% availability.
- High stability needed throughout the entire accelerator chain. Challenges:
- Achieving required FEL stability and availability.

Mitigation:

- High levels of sub-system redundancy needed: Photo-injector, linac, cryoplant, FEL – even complete machine redundancy!
- Reduce sub-system trips, relaxing operational levels, simplifying system integration, reduce accelerator size.

Demand:

- Industry EUV FEL accelerators driven by IC customer demands for higher transistor density.
- Next generation technology will require <13.5nm capability.
- Industry not yet fully committed to accelerator technology delivery, but this could switch very quickly if IC customer demand intensifies.

# Compton (X-ray & γ-ray) Applications

Performance Requirements:

- For LCS medical imaging, require 50MeV, 10mA and >100kW laser power to get ~40keV X-ray energy.
- Need high energy for short exposure times.
- High energy ERL needed for  $\gamma\text{-ray LCS}$  with high power LG laser.

Challenges:

• Achieving required laser power in small footprint for both X-ray and  $\gamma$ -ray generation.

Mitigation:

 Laser enhancement cavity, store 2-beams simultaneously with fast polarisation switch – double laser power of LCS (KEK/CBETA) – not yet demonstrated.

Demand:

 Compact ERL footprint to fit in hospital environment (10m x 6m) for X-ray LCS.

# **NP/PP** Applications

Performance Requirements:

- High performance polarised electron injector is key technology requirement for cooling and spin polarised experiments.
   Challenges:
- Achieving required peak current and operational QE.
- Precise control of beam current needed for spin polarisation measurement of exotic particles.

Mitigation:

• Optimised diagnostics needed to effectively characterise emittance, energy spread and PC performance.

Demand:

• Spin physics and imaging

# LERF - New Life for the Jefferson Lab FEL

Chris Tennant (Jlab)

- The Dark-Light Experiment overview and the future work
- Goal of the recent experiments: run power with internal gas target.
- MIT took data with and without gas at various magnet strengths.
- Development of the machine and possible applications.
- Design of single pass ERL cooler
- Design of multi-turn CCR cooler
- Demonstration of CCR using LERF infrastructure
- Medical isotope production
- Low energy target irradiation
- Intense positron source



## **Novosibirsk ERL based FEL as User Facility**

Vitaly V. Kubarev (BINP)

| Laser                         | Terahertz                                  | Far-Infrared               | Infrared                   |  |  |
|-------------------------------|--------------------------------------------|----------------------------|----------------------------|--|--|
| Status                        | In operation since<br>2003                 | In operation since<br>2009 | In operation since<br>2015 |  |  |
| Wavelength, μm                | 90 – 240                                   | 37 – 80                    | 8 – 11 (7–30)              |  |  |
| Relative line width (FWHM), % | 0.2 – 1                                    | 0.2 – 1                    | 0.1 – 1                    |  |  |
| Maximum average power, kW     | 0.5                                        | 0.5                        | 0.1                        |  |  |
| Maximum peak power, MW        | 0.9                                        | 2.0                        | 10                         |  |  |
| Pulse duration, ps            | 30 - 120                                   | 20 - 40                    | 10 – 20                    |  |  |
| Pulse repetition rate, MHz    | 3.7 – 22.4                                 |                            |                            |  |  |
| Polarization                  | Linear, > 99.6 %                           |                            |                            |  |  |
| Beams                         | Gaussian beams with diffraction divergence |                            |                            |  |  |
|                               |                                            |                            |                            |  |  |

 14 different applications are developed and conducted at Novosibirsk FEL.

2.26 working stations.

3. Users have access to the facilities 4-5 days a week with the stops of machine operation during the summer period.

# Asymmetric, Dual Axis Cavity for ERL: Recent R&D and applications

Ivan Konoplev (Oxford university)

- Overview of possible applications outside research community with market values for each application.
- Presented the most recent development of the asymmetric dual axis cavity for ERL.
- 7-cell and 11-cell cavities are in the laboratory and the RF studies will be carried out during this summer.
- Goal to get 1A class ERL system for THz and EUV applications.



# Photon Science Exploitation of ALICE in Biomedical Science

Mark Surman (STFC)

1. Development of a more effective cancer diagnostic scale.



#### **Cancer severity**

3. Improving Spatial Resolution Breaking through Diffraction Limit: sub-micron imaging.

4. ALICE: "Accelerators and Lasers in Combined Experiments" progress was discussed.



2. Advantage of electron beam driven source of radiation over conventional IR source shown.



## EUV ERLs for Semiconductor Integrated Circuit Lithography Norio Nakamura (KEK)

#### **Industry Study Group**



#### Key challenge to achieve >98% availability:

- Electron gun PC lifetime & exchange
- SRF linac processing & trip rate
- Undulator demagnetisation issues
- Cryoplant high pressure operation and maintenance



# **Applications for CBETA at Cornell**

Georg Hoffstaetter (Cornell University)

- DarkLight an experiment to find dark matter particles
- Compact Compton source for hard x-rays complementing CHESS' range
- THz laser complementing CHESS' range
- Beam for time-resolved electron diffraction from 1-6MeV
- Beam for Plasma Wakefield Acceleration with High Transformer Ratio
- eRHIC accelerator testing more detailed eRHIC R&D
- eRHIC cavity testing with beam
- · ASML medical isotope cavity testing with beam
- Generic ERL accelerator physics
- Electron cooler tests ERL tests for JLEIC
- · Preparations for Perle
- Preparations for LHeC
- · High-Power beam dynamics testing
- Permanent magnet and FFAG test bed for future accelerators
- ERLs-new beam operating regime: Linear acceleration and deceleration to capture the energy of spent beam, like a linac but without the power limit on beam current, as spent beam provides the power.
- Loss rates have to be limited.

## Applications of the Accelerator Technologies based on cERL

#### Medical imaging – LCS





Hiroshi KAWATA (KEK)

#### Nuclear security – LCS $\gamma$ -Ray



## **ERL Upgrade Plans for the ARIEL e-Linac**



#### Bob Laxdal (TRIUMF)

| Electron Beam Parameters |     |       |
|--------------------------|-----|-------|
| Energy                   | MeV | 30-50 |
| RF frequency             | GHz | 1.3   |
| Average current          | mA  | 10    |
| Charge per bunch         | pC  | 77    |
| Bunch rep freq.          | MHz | 130   |
| Bunch length (rms)       | ps  | 1     |
| Energy spread (rms)      | %   | 0.1   |
| Output Light Parameters  |     |       |
| Wavelength range         | μm  | 1-20  |
| Micropulse energy        | μJ  | 30    |
| Laser power              | kW  | 3-5   |

- > to ERL ring

> decelerated bunches

to RIB production

### Generation of High-flux High-energy Ultrashort Vortex Photon Beams from JLab ERL LERF FEL Facility



## Nuclear Physics Experiments at Mesa



Kurt Aulenbacher (Mainz U)

#### MESA Dark photon research



#### MAGIX

**Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target** 

- ightarrow a novel technique in nuclear and particle physics
- $\rightarrow$  measurement of low momenta tracks with high accuracy
- $\rightarrow$  competitive luminosities
- → Small device if compared to GeV scale spectrometer set ups!

## **ERL developments for eRHIC**

Vladimir Litvenenko (Stony Brook U)

# Speaker input still needed!

- Please provide additional input to parameter table, send to:
  - <u>Peter.mcintosh@stfc.ac.uk</u>
  - <u>Ivan.Konoplev@physics.ox.ac.uk</u>