

Neutron

detection

and

imaging

New 3D neutron sensors with high detection efficiency, high γ rejection and reduced fabrication complexity

R. Mendicino^{1,2}, G.-F. Dalla Betta^{1,2}, M. Boscardin³, C. Da Via⁴

 1 University of Trento, Via Sommarive, 9 - 38123 Trento, Italy 2 TIFPA INFN, Via Sommarive, 14 - 38123 Trento, Italy 3 Fondazione Bruno Kessler (FBK), Via Sommarive, 18 - 38123 Trento, Italy 4 University of Manchester, Oxford Road, Manchester M13 9PL4 , UK

Introduction

- AutomotiveAeronautical
- Fuel cell
- Hydrogen tanks
- Homeland security
- Forensics

- Archaeology
- Archaeometry
- Cultural heritage
- Other fields requiring sensitivity to light elements such as hydrogen, carbon and nitrogen

Scientific collaborations:

- ✓ Lawrence Livermore National Laboratory (USA)
- √ Jozef Stefan Institute (Slovenia)
- ✓ Czech Technical University in Prague
- ✓ Nuclear Physics Institute,
 Academy of Sciences of the
 Czech Republic

passivation P- bulk P-spray Alluminium contact

The Idea/Concept

- ➤ 3D microstructures can greatly enhance the detection efficiency of thermal neutrons
- The new proposed device has:
 - simple fabrication process
 - web-like structure with different geometries
 - ▶ ¹ºBoron as a converter material
- ➤ GEANT4 simulations predict ~20% efficiency
- High γ-ray discrimination is obtained using Pulse shape or pixel cluster analysis methods
- ➤ ¹ºBoron deposition tests have been successfully completed at LLNL laboratory
- ➤ The wafer layout contains diodes and MEDIPIX compatible pixel sensors

14000 12000 12000 10000 10000 10000 1333Ba gamma before discrimination 1333Ba gamma after discrimination 10000 4000 2000 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Charge [Me]

Collected charge spectra obtained from ²⁴¹Am α and ¹³³Ba γ particles impinging the 3D detector before and after pulse discrimination

Potential Impact

10B

- Owing to process simplification, suited to volume productions at relatively low cost
- The proposed sensors can be coupled to MEDIPIX/TIMEPIX family chips for thermal neutron imaging with high time and spatial resolution and high rejection to gamma rays
- Also suited to portable instruments
- Considerable performance improvement with respect to the state of the art can be achieved for relatively low neutrons fluxes (less than 10⁶ counts/pixel): unlimited dynamic range, ideal linearity and fast imaging