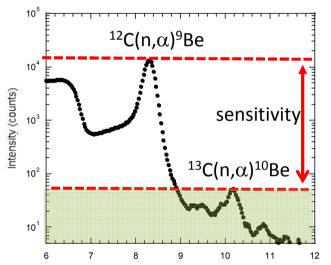


Fast neutron spectroscopy with very high energy and time resolution for diagnosing fusion DT burning plasmas

E. Pereli Cippo¹, M. Tardocchi¹, R. H Wilton², G. Croci³, L. C. Giacomelli¹, M. Rebai³, D Rigamonti³, G. Gorini³

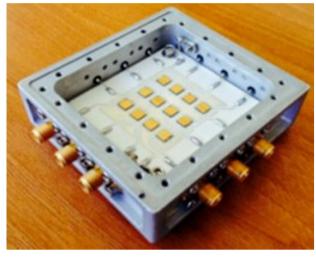

¹ Istituto di Fisica del Plasma «Piero Caldirola» – CNR, Milano, Italy

² European Spallation Source, Sweden ³University of Milano-Bicocca, Italy, ⁴

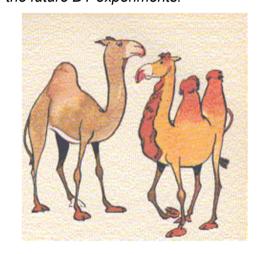
Introduction

The road to power production through nuclear fusion needs reliable diagnostics of the magnetically confined DT plasma. Diamond-based detectors have the highest potential as neutron spectrometers. Today's diamond neutron spectrometers combine very high energy resolution (FWHM<1%@14 MeV) and MHz counting rate capability (which allows for 10-100ms time resolution).

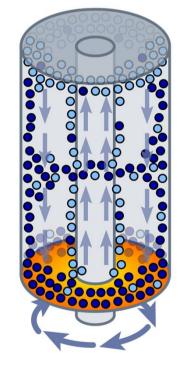
The sensitivity of the todays' diamond detectors to weak spectral components is limited by the presence, in "normal" diamonds, of ¹³C along with ¹²C. The resulting effect is to mask the high energy region of the main 14 MeV neutron peak which contains important information on the plasma, e.g. the fuel ions D and T ratio.



Deposited energy (MeV)


Neutron emission spectrum from 14 MeV neutrons recorded with a CVD diamond spectrrometer.

The sensitivity of present diamond neutron spectrometers to weak components in the neutron spectrum is today limited to ~1%.


There are two competitive reactions of neutrons in the MeV energy range, namely $^{12}\text{C}(n,\alpha)^9\text{Be}$ which is used for spectroscopy, and $^{13}\text{C}(n,\alpha)^{10}\text{Be}$, the latter featuring a Q value of about 2 MeV lower than the first reaction.

A 12-pixels CVD diamond detector matrix developed by IFP/UNIMIB and installed at the JET torus in Culham for the future DT experiments.

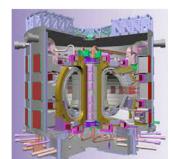
You wanted a (one-humped) dromedary, you got a (two-humped) came!!!!!

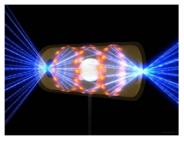
The well-known working principle of a gas centrigue.
Fast rotation and heating of a

gas cause separation of molecules with different weight (and thus isotopical composition).

The Idea/Concept

Target goals of this proposal is the realization of a prototype diamond based neutron spectrometer which features:


- * signal to background >10⁴ in the neutron energy range 12-20 MeV.
- *energy resolution<0.5% @ 14 MeV,
- *counting rate capability up to 5 MHz


This will be realized with the development of:

- 1) ¹³C-free diamond spectrometer grown with the CVD techniques
- 2) custom low noise/fast spectroscopy electronics

Potential Impact

High rate/high energy resolution/high sensitivity neutron spectrometers will find application at fusion burning plasma experiments (such as ITER or DEMO) and on fast netron irradiation beamline

Plasma diagnostics in magnetic/inertial fusion energy experiments

