BIG DATA IN REAL TIME: FAST AND FURIOUS

ABDALLAH¹, <u>G. AIELLI¹</u>, R. CARDARELLI¹, M. MANCA³

¹ University and INFN of Roma Tor Vergata, Italy; ² CERN

Giulio Aielli - University of Roma Tor Vergata - ATTRACT TWD2016

30/6/2016

DATA OR BIG DATA?

• Sensors produces DATA \rightarrow

• A SENSOR IS WHATEVER IS ABLE TO PRODUCE AN OBSERVABLE ENCODING EVENTS IN A GIVEN FORMAT

- TOO BIG FOR WHAT?
 - Sensors produce data faster than we can store
 - WE NEED TO INTERACT WITH DATA TO TAKE DECISIONS IN REAL TIME
- BIG IS A RELATIVE CONCEPT NOT JUST A MATTER OF VOLUME
 - More than the absolute volume the saliency matters. Model dependent
 - Successful data reduction model ? \rightarrow Thermodynamics! A thermometer is a smart sensor

BIG DATA: NOT ALL THE SAME:

Data model complexity

Structured

Multi-Structured /Hybrid

• Data model fixed

- Small parametric space to represent the data
- Prevalent deduction
 based analysis

- Data model evolving with data
- Variable parametric space
- Data driven induction and deduction

Free-structured

- Data model evolving with experience
- morphing parametric space
- Analogy based induction and deduction

DATA INTENSITY AND DATA RATE: FAST AND FURIOUS [HEP may have something to say!]

• The data volume can be driven by scattered or concentrated sensor systems

- GEOGRAPHICALLY SCATTERED DATA SOURCES → LOW DENSITY MANAGED THROUGH DATA LOGISTICS NETWORKS. THE REMOTE TERMINALS ARE SMART FRONT END
- CONCENTRATED SENSORS EACH PRODUCING HIGHER THAN MANAGEABLE DATA FLOW?
 A PARTICLE PHYSICS EXPERIMENT AT LHC FOR EXAMPLE...

For the HEP people this is a MUST since ever. **Why all this hurry??** Well, to avoid an experiment running 100 years....

- SEARCH FOR A NEEDLE IN THE STRAW
- Need for selection at sensor level ightarrow trigger concept
- FAST AND SMART PROCESSING TO TAKE A FAST DECISION IN REAL TIME, AT NS SCALE..., FAST AND FURIOUS

REALLY BIG DATA

- CERN "CLASSIC" BIG DATA 15 PBYTE/YEAR ۲
- THIS IS AFTER THE TRIGGER SELECTING 1/(4*104) •
- THE REAL DATA ARE THEN 600 EXA BYTE/YEAR •
- 19 PBYTE FROM A SINGLE SOURCE •

MUST BE TREATED AT THE SOURCE

HEP COMMUNITY AWARENESS AT THE DAWN OF ICT ERA

- IN THE '80 A BIG EFFORT STARTED TO SOLVE THE PROBLEM OF FAST PATTERN RECOGNITION AND NEURAL NETWORKS
 - RISTORI ET AL. ASSOCIATIVE MEMORIES (AM CHIP)
 - DARBO ET AL. CONTIGUITY PROCESSOR
 - AA.VV. START OF STUDIES ON NEURAL NETWORK ALGORITHMS FOR TRACKING
 - AA.VV. FUZZY LOGIC
- MODERN TRACKING TRIGGERS WOULD LIKE TO:
 - SUPPRESS THE NOISE
 - RECONSTRUCT THE TRACK ELEMENTS
 - CLASSIFY MEANINGFUL EVENTS THROUGH TOPOLOGY
- A regression is the best way to evaluate data against a model \rightarrow computation complexity

WEIGHTING RESISTIVE MATRIX: LET THE PHYSICS COMPUTE

- AN INTERCONNECTED REPETITIVE RESISTIVE NETWORK SUBJECTED TO AN ELECTROSTATIC POTENTIAL PROVIDES THE NECESSARY TOOLS
 - The diffusion potential as a notion of distance
 - The superposition principle ensures the correlation

THE WRM SCHEMA – A SIMPLE 1D IMPLEMENTATION

- FROM: R. CARDARELLI ET AL.; "ON A VERY FAST TOPOLOGICAL TRIGGER"; NIM A324(1993) 253-259
- A VIRTUALLY INFINITE RESISTIVE NETWORK, WHERE THE RATIO RW/RS DETERMINES THE EXPONENTIAL VOLTAGE DIFFUSION RATE

Diffusion

WRM EXERCISE: 3 TRACK VERTEX WITH NOISE

- UPPER IMAGE IS THE DIGITAL INPUT TO THE WRM.
- CAN BE ANY DIGITAL READOUT
 DETECTOR

• LOWER IMAGE IS THE CORRESPONDING POTENTIAL DISTRIBUTION PRODUCED BY THE WRM.

STRAIGHT LINE FIT: Y=MX+Q

STRAIGHT LINE FIT: Y=MX+Q

• A GOOD M, Q CHOICHE PRODUCE A SHARPER AND HIGHER PEAK IN THE PARAMETER SPACE

11

M2

STRAIGHT LINE FIT: Y=MX+Q

• A GOOD M, Q CHOICHE PRODUCE A SHARPER AND HIGHER PEAK IN THE PARAMETER SPACE

M2

M3

STRAIGHT-LINE FIT EXAMPLE: Y=MX+Q

• A GOOD M, Q CHOICHE PRODUCE A SHARPER AND HIGHER PEAK IN THE PARAMETER SPACE

M2

M3

M4

STRAIGHT LINE FIT EXAMPLE: Y=MX+Q

- A GOOD M, Q CHOICHE PRODUCE A SHARPER AND HIGHER PEAK IN THE PARAMETER SPACE
- IN THE OTHER CASES THE DISTRIBUTION IS FLAT

Giulio Aielli - University of Roma Tor Vergata - Lebanese University, Faculty of Science, Lebanon

The test can be done in parallel or the data are feed to the matrix by a circular buffer

VERTEX IDENTIFICATION EXAMPLE

Giulio Aielli - University of Roma Tor Vergata - Lebanese University, Faculty of Science, Lebanon

15

STRAIGHT LINE FIT EXAMPLE: Y=MX+Q

Giulio Aielli - University of Roma Tor Vergata - Lebanese University, Faculty of Science, Lebanon

FROM PARTICLE TRACKS TO FAST IMAGE ANALYSIS

- The idea: in HEP we can recognize simple 1D trajectories in $\sim 10^{-9}$ s
- In computer vision we need to process 1 M pixel in $\sim 10^{-2}$ s
- We can use 10⁷ longer time to perform much complex pattern recognition
- Rebuild the Image structures in terms of a parametric representation of its elements

- 20 years old IC Digital input
- 1D diffusion
- 8x8 inputs only

- New tech \rightarrow faster speed
 - Integrated to the sensor
- 3D diffusion
- Programmable matrix size

What we can dream of?

17

FROM FRONTIER SCIENCE TO FRONTIER PROBLEMS

DREAM APPLICATIONS WITH A COMMON BOTTLENECK: UNTREATABLE ROW DATA THROUGHPUT

- REAL TIME PROCESSING FOR
 MEDICAL APPLICATIONS
- NEURON SYSTEMS READOUT

WORST THAN EVER: LOW POWER CONSTRAINTS FOR MOBILE APPLICATIONS

- AUTONOMOUS ROBOTS,
- SMART PROSTHESIS
- ... AND SELF DRIVING CARS

Giulio Aielli - University of Roma Tor Vergata - ATTRACT TWD2016

FAST AND CAUTIOUS: CARS AND ROBOTS

How the a simple WRM sees objects through lines

Fast light and low power smart Front End is what would enable mobile smart devices challenge: low weight low power high performance.

We propose to develop the next generation of WRM structures to face this challenge

THANK YOU FOR THE ATTENTION

Giulio Aielli - University of Roma Tor Vergata - ATTRACT TWD2016

BACKUP

Giulio Aielli - University of Roma Tor Vergata - ATTRACT TWD2016

WEIGHTING RESISTOR MATRIX (WRM) CONCEPT

- A given node n_{ij} is set to a potential V which is diffused to the neighboring nodes with a law:
 - V_{KL}=(1/W) |NIJ-NKL|
 - W is the diffusion constant which depends on the resistive partition
 - $V_{\rm KL}$ is correlated to the distance
- By measuring in 3 point V it is possible to determine the position of $N_{\rm IJ}$
- BY MEANS OF AN APPROPRIATE SET OF MEASUREMENT IT IS POSSIBLE TO EXTRACT INFORMATION ON THE POINT POSITION
- How to extract global information about a pattern of points?

Hough Transform

Describe straight lines in polor coordinates, $xcos(\theta) + ysin(\theta) = r$. For any "on" pixel (x_0, y_0) , compute a set of possible (θ_i, r_i) .

200

=

SIMULATION OF 100X100 PIXEL MATRIX

- Shown how the data transform in the connection space
- *m* is looping {0...2} in steps of 0.1
- Each *m* test is a column inserted in the parametric space

SIMULATION OF 100X100 PIXEL MATRIX

CRUCIAL: S/N increases with resolution -> increase the number of degrees of freedom of the fit

Find the circle: loop on x, R

▶ 3D \rightarrow need to do slices in parametric space

- All the steps needed? NO!!!!
- Interpolation in parametric space

MEDICAL APPLICATIONS?

• Data reduction in medical imaging \rightarrow smart Front End for PET/CT?

The Sinogram is very much similar to the Hough transform and the WRM is essentially a very fast Hough transformer (in its basic version)

 FOR PET → COULD BE USEFUL FOR CORRECTING FOR SMALL MOVEMENTS OF THE PATIENT?

27

MEDICAL APPLICATIONS?

• Hadrontherapy \rightarrow could be useful for keeping the beam on a moving target?

 FOR INSTANCE IT COULD BE POSSIBLE TO TRACK THE ORGAN IN REAL TIME WITH MM PRECISION USING A FAST ARTIFICIAL VISION SYSTEM

