

The sixth sense

A new detector to observe the universe

N.A. van Bakel on behalf of the Nikhef R&D and Gravitational Physics groups

Sensitivity

Sensitivities of GW detectors from the first to the third generation

- High-freq (>300 Hz):
- ✓ Laser shot noise
- Increase laser power
- Mid-freq (40-300 Hz):
- √ Thermal noise
- Improve mirrors
- Low-freq (<40 Hz):
- ✓ Seismic noise
- Vibration isolation

Vibration isolation

A suppression of seismic motion by about 10^{10} is required: use anti-spring technology in the Advanced Virgo seismic noise filters to reduce the system stiffness

Vibration monitoring - Newtonian Noise

No Newtonian noise model \Rightarrow to develop subtraction schemes, we have to measure the seismic wave fields with arrays of seismic sensors

Newtonian interaction between seismic wave field and interferometer mirrors

Vibration monitoring - MEMS sensor

Our goal is to develop a new type of MEMS accelerometer with integrated readout electronics

~ 1 ng/vHz	< 10 µg/VHz	< 1 mg/VHz	Noise Floor
< 100Hz	DC-100Hz	DC-400Hz	Bandwidth
< ±1g	±12	±50g (airbag), ±2g (vehicle stability)	Full-scale Range
Seismic	Navigation	Automotive	Parameter

"Sixth sense" - Detection of Gravitational Waves

- Build various gravitational detectors next 10 15 year: Einstein Telescope (ground based), eLISA (in space), ...
- Technological innovation lies in the combination of optomechanics, electronics and sensor systems
- Socio-economical impact

