

X- and β -ray sensitive CMOS Sensors for Science and Society

M. Deveaux¹, J. Baudot³, M. Kachel³, T. Schmid², J. Stroth¹, M. Winter³

- ¹ Institute for Nuclear Physics, Goethe-University Frankfurt/M
- ² Institute of Biochemistry 1 Pathobiochemie, Goethe-University Frankfurt/M
- ³ IPHC/CNRS Université de Strasbourg, Strasbourg

What CMOS Sensors?

STAR-Vertex detector

CMOS Sensor

STAR-Experiment

Features of CMOS Sensors (MAPS):

- Sensor and readout integrated on a chip
- Cheap commercial mass production
- Excellent for radiation detection
- Design and integration to complex systems is mastered

Can CMOS sensors help to answer this question?

How can I specifically suppress the production of tumor generating proteins?

The answer is hidden in the structure of the RNA!

Measuring the RNA-shape

Picture of commercial beta imager

Better, more sensitive beta imagers might:

- Reduce activity needed (less nuclear waste, working exposure)
- Increase spatial resolution with digital post processing

Can MAPS do it?

Sensor (not optimized)

mRNA sample

A test with vertex detector hardware from CBM

Can MAPS do it?

After ~10% of usual exposure time:

RNA as seen by CMOS MAPS (~ 2h, not optimized)

Excellent results with non-optimized hardware

Question asked in the "Reduced Use of Water in Onshore Operations Challenge"

Could one build a near time broad band sensor for liquid composition?

Idea: Use X-Ray Fluorescence analysis (XRF)

- Irradiate sample, e.g. water, with X-rays
- Measure spectrum of Fluorescence X-rays
- Extract atomic composition of sample from spectrum

Can MAPS do something here?

MAPS with 1 MPixel and fully analog readout.

	Diodes per Sensor	Rate per diode	Total rate
Silicon Drift Det.	1	100 kHz	100 kHz

MAPS may accelerate XFR by factor 100 – 1000 => Game changer for some applications?

And the spectrum?

MAPS show a highly competitive energy resolution

What else?

Energy resolution

Large surface pixel sensor

Colored X-ray pictures

The dream

- Back thinning
- Stitching
- Analog/digital high speed readout

Build β - and X-ray imagers and commecialize them.

Boost science and applications in the field of analytics and industrial quality control

The technology

Back thinning: Bring active volume to surface.

G. Deptuch et al., Nucl. Instr. Meth. A543, 537 (2005)

Depletion + spectroscopic readout:

D. Doering et al., JINST C01013 (2016)

Stitching: Sensors with big surfaces

S.E. Bohndiek et al., *IEEE TNS*, vol. 56, p. 2938 (2009)

The technologies are individually demonstrated. Merge them to step forward.

The synergies

Wafer-scale integration

Courtesy: N. Guerrini Rutherford Appleton Laboratory

Silicon Genesis 20 µm thick wafer

Wafer-scale integration possible due to stitching

- Would ease assembly of large areas
- · Will further push for low power design
- One fab in a foundry: 1Mwafers/year, for ALICE (10 m²) 1.4 kwafers (200 mm)

Flexible nature of thin Si (limits still to be tested with CMOS on top)

· Can we take advantage of this for lower mass detectors?

walter.snoeys@cern.ch

Pushing those technologies will guide experiments in high energy physics to new limits.

The dream

- Back thinning
- Stitching
- Analog/digital high speed readout

Build β - and X-ray imagers and commecialize them.

Boost science and applications in the field of analytics and industrial quality control

