

Spectral Imaging using Hybrid Integrated, Large-Area High Resolution X-ray Detectors

Ruud Vullers, Inge Peters, Jan Bosiers
Teledyne DALSA Professional Imaging (TDPI), Eindhoven,
The Netherlands

Why Spectral Imaging

In X-ray imaging, e.g. for Medical or Security applications the ultimate image quality is obtained when the energy of *each* incoming photon is measured:

- Increased discrimination between different materials.
- Significantly better image contrast can be achieved.
- Significant enhancement in image quality with reduced radiation dose.
- Reduction of noise for the same quantum efficiency.

State-of-the-Art

Current approaches (like Medipix & Timepix) are a combination of **direct detection** and **ROIC's**

- Disadvantages direct detection
 - Requires high voltages
 - –Materials are expensive (medical: CdTe and a-Se) and suffer from degradation
- Image sizes
 - -Currently limited to a few square centimeters
 - Commercial Medical X-ray imaging size between 13x13 to 45x45cm².

Enablers Spectral Imaging v2

Indirect detection

 Structured and fast scintillators enabling lower costs, higher reliability and easier system integration than current approaches

CMOS imagers:

-Fast, low-noise and affordable wafer-scale devices.

3-D integration

 Direct wafer-to-wafer bonding (has been developed for consumer imaging applications (e.g. in mobile phones)

OmniVision OV23850 PureCel-S General Structure

Scaling:

 Continuous increase in computing power/area for the ROIC.

Assembly:

 New assembly technologies to enable smaller/lighter overall device sizes (e.g. 3D printing).

Long Term Goal

Make a new generation of X-ray spectral imaging devices based on photon counting using indirect detection in combination with a large-area CMOS imager wafer-bonded to an advanced ROIC.

In order to achieve the goal of increasing performance and higher reliability at lower cost, we need to focus on:

Increase detector Size:

- Applications call for several cm².
- Yield values 80 to 90% minimum for 8 to 12 inch wafers.
- Need for alternative IC architectures.

Reduce Cost:

- Trade-off between Size and Yield.
- Need for large area detector Assembly Technologies.
- Research for (new) Hybrid Device Architectures.
- Wafer Processing, Packaging and Assembly reduction needed.
- 3D printing potentially beneficial.

Improved Scintillators:

 Scintillators with a high light output, high resolution, small decay times and high stopping power.

Potential Impact

Medical:

- Patient examinations: quicker, sharper images and lower doses.
- Medical diagnostics: bone densitometry and mammography, tissue or material identification

Security:

 Identify dangerous or forbidden substances hidden in closed containers, suitcases and bags.

Competences and Contributions

Teledyne Dalsa Professional Competences and possible contributions

- Application Knowledge
- Leader in wafer-scale CMOS imagers
- Expertise in high-speed low-noise ROIC's
- In-house advanced assembly process development
- X-ray conversion: modelling, optimization and evaluation

Looking forward to ATTRACT partners for research projects!

