Avalanche Pixelated Detectors for Time Resolved Experiments

NICOLA TARTONI

Diamond Light Source

Techniques requiring time resolving detectors

- Crystallography
- Powder diffraction
- Small angle scattering
- Spectroscopy

•

Timepix3

- Time stamp per pixel 1.56ns resolution
- Data-driven Zero-suppressed Sparse readout
- Pixel size 55 μm x 55 μm
- Pixel matrix array 256 x 256

Small molecule crystallography

Hystogram of ToAs

Best achieved resolution:

8 ns (sigma)

Measurements taken in Hybrid and Low-Alpha modes

Limitations

DEAD TIME: Time Over

Threshold + 475ns

MAX GLOBAL COUNTING

RATE: 80 Mhits/s/chip

Avalanche Pixelated Sensors Hi-Res Silicon

Structures fabricated by Micron Semiconductor and Glasgow University

Issues to be addressed

Issues to be addressed

Mini-Attract Project

- Development of front-end electronics with 55 micron pitch dedicated to Avalanche Detectors
- Development of Avalanche Pixelated Sensors suitable to build large area detectors

Possible Attract Project

- Full detector system development
 - Avalanche sensor
 - ASIC (4-side buttable with high performance digital section)
 - Interconnections (board-level optical interconnections)
 - -DAQ

Potential Impact

- Enhancement of hybrid detector technology
- Much more efficient Time
 Resolved Experiments
- Effective operation in 1 keV 4 keV range