

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

P. Verwilligen ¹, I. Vai ³, R. De Oliveira ², M. Maggi ¹, A. Sharma ², A. Colaleo ¹, F. Fallavollita ³, P. Giacomelli ⁴, L. Guiducci ⁴, A. Ranieri ¹, M. Ressegotti ³, P. Vitulo ³

¹INFN Bari
 ²CERN
 ³University & INFN Pavia
 ⁴University & INFN Bologna

TWD Attract Symposium June 30th — July 1st 2016, Barcelona (Future Challenges)

State of the Art: MPGD

Fast Timing MPGD

Impact

Future Challenges: High-*L* Collider Detectors

- Future Colliders (FC) will operate at higher \sqrt{s} and \mathcal{L}
- For muon detection systems of FC experiments:
 - $\begin{array}{l} \frac{\Delta p}{p} \propto \frac{1}{BL^2} \Rightarrow \text{high } B \text{ field, large instrumented area} \\ \mathcal{L} \Rightarrow \text{higher rate capability, Pile-Up vertices} \end{array}$
- To **instrument large areas**, gas detector technology will remain unchallenged
- Detectors need to have high rate capability
- These detectors are also suited for high granularity (digital) calorimetry at Future Colliders
- Fast Timing will enable to identify the correct interaction (at Future Colliders ≥ 200 collisions will overlap with the interesting collision = Pile-Up)

Fast Timing MPGD

Impact

Future Challenges: Time-Of-Flight PET

PET principle, w/ & w/o TOF. [source: sublima-pet-mr.eu/]

PET scans of a patient with colon cancer. The use of TOF improves the lesion detectability (arrow). [source: J. Karp, U. Pennsylvania.]

- PET is a **non-invasive** technique to visualize organs with **high metabolic activity** and is used to spot tumors
 - β^+ sugar (FDG) is administered to a patient and concentrates at regions of high metabolic activity (tracer)
 - e^+ is released and looses energy during travel (\sim 1 mm) before annihilation
 - 2 γ (511 keV) are emitted back to back, their coincident detection determines the Line of Response (LOR)
- w/o TOF equal probability assigned to each point along the LOR
- w/ TOF few 100 ps measurement will lead to \sim 5 cm precision along the LOR

the use of fast timing in PET results in high contrast images

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Fast Timing MPGD

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have **high detection efficiency** for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have **good energy resolution** to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be **inexpensive** to produce (instrument larger area, instrument more hospitals)

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Fast Timing MPGD

Impact

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have **good energy resolution** to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be **inexpensive** to produce (instrument larger area, instrument more hospitals)

LYSO crystal technologies: high Edetection • $O(5) \, mm$ ۲ $\sigma_{ extsf{space}}$ • good ($\leq 10\%$) $\sigma_{\rm energy}$ • 400–600 ps $\sigma_{\sf time}$ expensive ٥ cost operation easy

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Fast Timing MPGD

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have good energy resolution to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be **inexpensive** to produce (instrument larger area, instrument more hospitals)

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Fast Timing MPGD

Impact

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have good energy resolution to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be **inexpensive** to produce (instrument larger area, instrument more hospitals)

Future Challenges

State of the Art: MPGD

Fast Timing MPGD

Impact

Micro Pattern Gaseous Detector (MPGD)

Example: Gas Electron Multiplier (GEM)

- Photo-lithographic techniques allowed to produce Micro Patterned detectors
- Main Characteristics: High rate capability (> 50 MHz/cm²), good spatial resolution (50 μ m), high efficiency (\geq 95 %), time resolution of O(5 ns)
- flexible detector structures (cfr. cylindrical trackers for KLOE and BES-III)

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Future Challenges

State of the Art: MPGD

Fast Timing MPGD

Impact

Micro Pattern Gaseous Detector (MPGD)

Example: Gas Electron Multiplier (GEM)

- Two separated regions: drift region (creation of electron-ion pairs) and gain region (multiply drifted electrons to observable electric signal)
- Rate capability is improved by fast collection of postive ions
- MPGD Time resolution driven by fluctuations in creation of electron-ion pairs

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

(Fast Timing MPGD)

Impact

Fast Timing MPGD Principle

- time resolution driven by distance fluct's of d_{near} = |e⁻ - amplific|
- $\sigma_t \propto 1/(\lambda v_{\text{drift}})$, $\lambda = \#$ primary cls
- electron-ion pairs created close to amplification structure result in fast signals
- Fast Timing MPGD idea: split drift volume in N layers, each with own amplific.structure $\sigma_t \propto 1/(\lambda v_{\rm drift} N)$

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

(Fast Timing MPGD)

Impact

Fast Timing MPGD Principle

- time resolution driven by distance fluct's of $d_{\text{near}} = |e^- - \text{amplific}|$
- $\sigma_t \propto 1/(\lambda v_{\text{drift}})$, $\lambda = \#$ primary cls
- electron-ion pairs created close to amplification structure result in fast signals
- Fast Timing MPGD idea: split drift volume in N layers, each with own amplific.structure $\sigma_t \propto 1/(\lambda v_{drift} N)$

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

D

(Fast Timing MPGD)

Impact

Fast Timing MPGD Principle

- time resolution driven by distance fluct's of $d_{\text{near}} = |e^- - \text{amplific}|$
- $\sigma_t \propto 1/(\lambda v_{\text{drift}})$, $\lambda = \#$ primary cls
- electron-ion pairs created close to amplification structure result in fast signals
- Fast Timing MPGD idea: split drift volume in N layers, each with own amplific.structure $\sigma_t \propto 1/(\lambda v_{drift} N)$

• resistive structure \Rightarrow signal from any layer induced in readout

• time resolution improved by factor N = number of layers

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Fast Timing MPGD Prototype	
2-layer prototype	
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ &$	
Single layer specifications:	
• Drift layer: 250 μ m drift layer	(Red: Dupont Coverlay spacers)
• Gain layer: 50 μ m kapton	(Yellow: GEM foil: 70 μ m hole, 140 μ m pitch)
• Resistive kapton: $25 \mu { m m}$	(Brown: Dupont high resistivity Kapton XC)

Future Challenges

(Fast Timing MPGD)

Impact

(Fast Timing MPGD)

Impact

Fast Timing MPGD First Results

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

(Fast Timing MPGD)

Fast Timing MPGD for photons

Adapt Fast Timing MPGD to detect $511 \text{ keV} \gamma$ from PET

- photon conversion (Compton-e⁻) in 200 μm soda-lime glass (optimal resitive material)
- inverted order of drift and gain region, allowing for fast signal from first electron-ion pair
- preliminar simulations indicate $\sigma_t = 500 \text{ ps}$ for e^{\pm} from 200–400 keV with 4 layers
- Low-*E* electrons penetrate less layers, but have higher primary ionization density
- scheme left is starting point for simulation study: try to obtain maximal γ efficiency, fastest timing and best energy resolution
- final layout will be trade-off between fast time (many layers) & good E meas. (large gas gap)
- search for γ -converter efficient in 150–511 keV
- further ideas: use γ-converter glass to build amplification structures

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Fast Timing MPGD

Impact

Summary & Impact

TOF-PET with fast **MPGD**

- Demonstrating that MPGD detectors are suitable for PET purposes will revolutionize medical physics: PET scanners will become more affordable
- TOF-PET is most promising, therefore need very fast MPGD detectors
- We proposed a very fast MPGD \Rightarrow demonstrate the γ detection capabilities

HEP application for fast MPGD

- Future Colliders will require fast timing to deal with increasingly large backgrounds (neutron backgrounds and prompt particles from Pile-Up)
- \leq 100 ps timing will allow to assign particles to the correct interaction
- Muon detectors will need this technology, but this technology will also be able to instrument future high-granularity (digital) hadron calorimenters

fast timing MPGD technology is worth investing time, money and brains to mature this idea into working full scale prototypes!

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications