

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

P. Verwilligen ¹, I. Vai ³, R. De Oliveira ², M. Maggi ¹, A. Sharma ², A. Colaleo 1 , F. Fallavollita 3 , P. Giacomelli 4 , L. Guiducci 4 , A. Ranieri 1 , M. Ressegotti ³, P. Vitulo ³

> 1 INFN Bari 2 CERN 3University & INFN Pavia 4University & INFN Bologna

TWD Attract Symposium June 30th — July 1st 2016, Barcelona

Future Challenges: High-*L* Collider Detectors

- **•** Future Colliders (FC) will operate at higher \sqrt{s} and \mathcal{L}
- **•** For muon detection systems of FC experiments:
	- *p* $\frac{\Delta p}{\Delta p} \propto \frac{1}{B L^2} \Rightarrow$ high *B* field, large instrumented area $\mathcal{L} \Rightarrow$ higher rate capability, Pile-Up vertices
- **•** To instrument large areas, gas detector technology will remain unchallenged
- **O** Detectors need to have high rate capability
- **•** These detectors are also suited for high granularity (digital) calorimetry at Future Colliders
- Fast Timing will enable to identify the correct $interaction$ (at Future Colliders > 200 collisions will overlap with the interesting collision $=$ Pile-Up)

Future Challenges: Time-Of-Flight PET

PET principle, w/ & w/o TOF. [source: sublima-pet-mr.eu/]

PET scans of a patient with colon cancer. The use of TOF improves the lesion detectability (arrow). [source: J. Karp, U. Pennsylvania.]

- PET is a **non-invasive** technique to visualize organs with high metabolic activity and is used to spot tumors
	- β^+ sugar (FDG) is administered to a patient and concentrates at regions of high metabolic activity (tracer)
	- *e*⁺ is released and looses energy during travel $(\sim1$ mm) before annihilation
	- 2γ (511 keV) are emitted back to back, their coincident detection determines the Line of Response (LOR)
- w/o TOF equal probability assigned to each point along the LOR
	- $w/$ TOF few 100 ps measurement will lead to \sim 5 cm precision along the LOR

the use of fast timing in PET results in high contrast images

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $3 / 10$

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have good energy resolution to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be inexpensive to produce (instrument larger area, instrument more hospitals)

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have good energy resolution to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be inexpensive to produce (instrument larger area, instrument more hospitals)

LYSO crystal technologies: **o** high \bullet ϵ detection *O*(5) mm \bullet σ_{space} • good $(10%)$ σ energy \bullet **•** 400–600 ps \bullet σ_{time} **o** expensive \bullet cost **O** operation \bullet easy

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have good energy resolution to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be inexpensive to produce (instrument larger area, instrument more hospitals)

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

Time-Of-Flight Positron Emission Tomography

An ideal TOF-PET detector should ...

- \Rightarrow have high detection efficiency for γ
- \Rightarrow have high spatial resolution to determine precisely the LOR
- \Rightarrow have good energy resolution to reject scattered γ 's
- \Rightarrow have high time resolution to increase the sensitivity / image constrast
- \Rightarrow be inexpensive to produce (instrument larger area, instrument more hospitals)

Micro Pattern Gaseous Detector (MPGD)

Example: Gas Electron Multiplier (GEM)

- **•** Photo-lithographic techniques allowed to produce Micro Patterned detectors
- Main Characteristics: High rate capability (> 50 MHz/cm²), good spatial resolution (50 μ m), high efficiency (\geq 95%), time resolution of $\mathcal{O}(5 \text{ ns})$
- **•** flexible detector structures (cfr. cylindrical trackers for KLOE and BES-III)

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $-5/10$

Micro Pattern Gaseous Detector (MPGD)

Example: Gas Electron Multiplier (GEM)

- **•** Two separated regions: drift region (creation of electron-ion pairs) and gain region (multiply drifted electrons to observable electric signal)
- **•** Rate capability is improved by fast collection of postive ions
- MPGD Time resolution driven by fluctuations in creation of electron-ion pairs

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $-5/10$

Fast Timing MPGD Principle

- **time resolution driven** by distance fluct's of $d_{\text{near}} = |e^- - \text{amplitude}|$
- \bullet $\sigma_t \propto 1/(\lambda v_{\text{drift}})$, $\lambda = \#$ primary cls
- **e** electron-ion pairs created close to amplification structure result in fast signals
- Fast Timing MPGD idea: split drift volume in *N* layers, each with own amplific.structure $\sigma_t \propto 1/(\lambda v_{\text{drift}} N)$

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $-6/10$

Fast Timing MPGD Principle

- **time resolution driven** by distance fluct's of $d_{\text{near}} = |e^- - \text{amplitude}|$
- \bullet $\sigma_t \propto 1/(\lambda v_{\text{drift}})$, $\lambda = \#$ primary cls
- **e** electron-ion pairs created close to amplification structure result in fast signals
- Fast Timing MPGD idea: split drift volume in *N* layers, each with own amplific.structure $\sigma_t \propto 1/(\lambda v_{\text{drift}} N)$

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $-6/10$

Fast Timing MPGD Principle

- **time resolution driven** by distance fluct's of $d_{\text{near}} = |e^- - \text{amplitude}|$
- \bullet $\sigma_t \propto 1/(\lambda v_{\text{drift}})$, $\lambda = \#$ primary cls
- **e** electron-ion pairs created close to amplification structure result in fast signals
- Fast Timing MPGD idea: split drift volume in *N* layers, each with own amplific.structure $\sigma_t \propto 1/(\lambda v_{\text{drift}} N)$

• resistive structure \Rightarrow signal from any layer induced in readout

• time resolution improved by factor $N =$ number of layers

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $-6/10$

Fast Timing MPGD First Results

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $-8/10$

Fast Timing MPGD for photons

Adapt Fast Timing MPGD to detect $511 \text{ keV } \gamma$ from PET

- **•** photon conversion (Compton- e^-) in 200 μ m soda-lime glass (optimal resitive material)
- **•** inverted order of drift and gain region, allowing for fast signal from first electron-ion pair
- **•** preliminar simulations indicate $\sigma_t = 500$ ps for e^{\pm} from 200–400 keV with 4 layers
- **· Low-E** electrons penetrate less layers, but have higher primary ionization density
- scheme left is starting point for simulation study: try to obtain maximal γ efficiency, fastest timing and best energy resolution
- final layout will be trade-off between fast time (many layers) & good *E* meas. (large gas gap)
- **•** search for γ -converter efficient in 150–511 keV
- further ideas: use γ -converter glass to build amplification structures

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications

 $9/10$

10 / 10

Summary & Impact

TOF-PET with fast MPGD

- **O** Demonstrating that MPGD detectors are suitable for PET purposes will revolutionize medical physics: PET scanners will become more affordable
- **TOF-PET** is most promising, therefore need very fast MPGD detectors
- We proposed a very fast MPGD \Rightarrow demonstrate the γ detection capabilities

HEP application for fast MPGD

- **•** Future Colliders will require fast timing to deal with increasingly large backgrounds (neutron backgrounds and prompt particles from Pile-Up)
- \bullet \leq 100 ps timing will allow to assign particles to the correct interaction
- Muon detectors will need this technology, but this technology will also be able to instrument future high-granularity (digital) hadron calorimenters

fast timing MPGD technology is worth investing time, money and brains to mature this idea into working full scale prototypes!

Fast Timing Micro-Pattern Gaseous Detector for PET-TOF and future collider applications