towards intelligent designer materials. **Real time 4D imaging of energy flow**

08860 Castelldefels (Barcelona), Spain

Technology

atto.icfo.eu

The Barcelona Institute of Science and

ICREA

J. Biegert

ICFO - The Institute of Photonic Sciences

Energy Harvesting - Organic Solar Cells

Courtesy: KIT, Inst. Verfahrenstechnik

Efficiencies < 10%

atto.icfo.eu

ATTRACT - 2016

Report of the Basic Energy Sciences Advisory Committee, United States Department of Energy

Attoscience and Ultrafast Optics ————————————————————————————————————	Report of the Basic Energy Sciences Advisor	From materia	The key: Insufficient tim	Courtesy: KIT, Inst.Verfa	200 nm P3HT:PCBM 30 nm PEDOTPSS 125 nm ITO-Anode Glass sunlight	Energ	
ATTRACT - 2016	Y Committee, United States Department of Energ	l alchemy to synthesis	ne resolution to study exciton fo	ahrenstechnik Effici	Caenode 	gy Harvesting - Organic Sola	he problem - one example
atto.icfo.eu	with element specificit		ormation and dynamics	iencies < 10%	PCBM	ır Cells	

Ν

2

Tools are needed to scrutinize electronic/molecular dynamics on their native length and timescale.

Follow dynamics to understand function!

Tools are needed to scrutinize electronic/molecular dynamics on their native length and timescale.

Follow dynamics to understand function!

Atto- to femtosecond pulses

with element / state specificity

-	5
1	D
1	
	2
(D
(ו
C	_
-	=.
	5
(D
-	5
<u>.</u> .	3
1	D
-	5
-	4

Tools are needed to scrutinize electronic/molecular dynamics on their native length and timescale.

Follow dynamics to understand function!

Atto- to femtosecond pulses

with element / state specificity

Ultrafast soft/hard X-Ray Absorption and Diffraction

Friedrich, Knipping, Laue (1912), Bragg (1913), Moseley (1913)

broadband imaging unsolved		
low yield wavelengths long	as - fs	ceV High Harmonic Generation:
radiation doses	· · · · · ·	•
M-B€ synchronization / random pulses	100 fs -10 fs, 1.9Å	X-Ray Synchrotron / FEL:

Attoscience and Ultrafast Optics

ATTRACT - 2016

atto.icfo.eu

• gives geometric and electronic structure!

oxidation/spin state, ligation, symmetry

works with gas, liquid, solid phase

ATTRACT - 2016

Stanford, RIKEN, Berkeley, JILA, MIT, MPQ, MBI, DESY, BESSY, ...

also being developed at

S. Teichmann et al. Nature Commun. 7, 11493 (2016)

First table top attosecond SXR source at ICFO:

gives geometric and electronic structure!

oxidation/spin state, ligation, symmetry

works with gas, liquid, solid phase

atto.icfo.eu

What is the problem?

First attosecond real-time XAFS measurement in condensed matter!

(2D TMDC for spin and valleytronics)

ATTRACT - 2016

ഗ

Rapid 4D (2D + energy + time) detection is the bottleneck

Detection resolution and efficiency dE/E ~ 1/100 only < 400 eV 10%

impossible to do otherwise

8h measurement

(2D TMDC for spin and valleytronics)

First attosecond real-time XAFS measurement in condensed matter!

What is the problem?

Proposal

Energy resolving 2D detection + pump and probe = 4D

• Energy resolving per pixel SDD limit 127 eV

12.7 mm x 12.7 mmm 1 kHz, 145 eV @ Mn Kα

Proposal

Energy resolving 2D detection + pump and probe = 4D

• Energy resolving per pixel SDD limit 127 eV

12.7 mm x 12.7 mmm 1 kHz, 145 eV @ Mn Kα

- Photon counting also below ~ I keV
- Lock-in detector with on chip demodulation

90 billion samples/s to 5k frames/s for 300 x 300 pixels

		ļ
	5	
	0	
100	Ū	
	0	
	S	
	b	
	A COLORADO	-

Energy resolving 2D detection + pump and probe = 4D

Energy resolving per pixel SDD limit 127 eV

12.7 mm x 12.7 mmm 1 kHz, 145 eV @ Mn Kα

- Photon counting also below $\sim 1 \text{ keV}$
- Lock-in detector with on chip demodulation

90 billion samples/s to 5k frames/s for 300 x 300 pixels

σ

atto.icfo.eu

Exciton imaging, biochemical hyper spectral imaging, X-ray imaging, volume and surface tomography, security

Element specific real-time imaging for every lab and company

lock-in detection + energy dispersive + single photon