The Global Feature Extractor (gFEX)

an ATLAS L1 Calorimeter Trigger Phase-I upgrade

Vasiliki Kouskoura

HEP Conference 12-15 May 2016

Vasiliki Kouskoura (BNL)

HEP 2016

- W, Z and H bosons, top quarks produced by pp collisions
- Used in precision measurements and beyond the SM searches
 - non-isolated leptons
 - overlapping jets that contain substructure from the decay of SM particles
- boosted topologies

Bottom quarks that merge with nearby jets

The higher the energy the more the boost!

Challenges at High Luminosity

Identification of events with jet substructure
 current trigger insufficient for jets with significant substructure!
 Iarge-R jet acceptance in HLT restricted due to L1 requirements
 L1 trigger designed for narrow jets in Runs 1 and 2

Vasiliki Kouskoura (BNL)

Motivation: L1Jet Trigger Acceptance

Lateral Shower Extent

NATIONAL LABO

- ATLAS L1 Jet Trigger designed for narrow jets, with limited acceptance for large objects
 ΔηxΔφ: 0.8x0.8 in Runs 1 and 2
 - Need significantly larger Rol to avoid biasing against boosted objects

Consider 2 jets with equal pT a 0.8x0.8 Rol contains most of QCD jet

- fraction of EW jet
- a 2.0x2.0 Rol would have comparable efficiency for both!
- with much higher trigger rate

- L1 Calorimeter during Run 3
 - new LAr calorimeter trigger electronics
 - ✓ new Feature Extractors for electrons/taus, jets and large (boosted) objects

Vasiliki Kouskoura (BNL)

HEP 2016

7

global Feature Extractor (gFEX)

BROOKHAVEN NATIONAL LABORATORY

- Entire calorimeter on a single module!
- receives ΔηxΔφ=0.2x0.2 calorimeter towers
- Identifies events with large-radius jets
- ✓ improves acceptance for boosted objects
- ✓ jet-level pile-up subtraction
- can reject QCD jets compared to EW jets
- subjet multiplicity
- substructure variables

- Calculates global event variables
 - ✓ E^{*miss*}, centrality...
 - ✓ jets-without-jets observables

http://arxiv.org/abs/1310.7584

12 May 2016

Vasiliki Kouskoura (BNL)

HEP 2016

8

gFEX prototypes

Prototype v1.b

- 1 Virtex-7 FPGA
- Zynq SoC
- board infrastructure
- test components, interfaces, routing

Prototype v2

- 3 Virtex-Ultrascale FPGA
- Zynq SoC
- board layout 100% ready
- submitted for manufacture

Vasiliki Kouskoura (BNL)

Finding Large Radius Jets

Step 1: Find seeds. Seeds are towers with energy above a set E_T threshold.

Step 2: Sum energy from neighboring towers. Estimate pile-up energy. Jets allowed to overlap to maximize efficiency.

Step 3: Subtract pile-up energy per jet and join results to provide large R-jet. The final result is stored on the processing FPGAs.

Vasiliki Kouskoura (BNL)

Area based pile up subtraction

- p calculated on gFEX highly correlated with the offline value
- Similar pileup suppression technology can be applied as in standard offline

median pT density
$$\rho$$

 $\rho \sim$ to pileup activity
 $\rho = \text{median} \left\{ \frac{p_{T,i}^{\text{jet}}}{A_i^{\text{jet}}} \right\},$
A: jet area four momentum

Increase trigger efficiency for *Fat-jets* or boosted objects in ATLAS

- The study of hadronic decays of high-pT bosons and fermions is a critical and vital part of the ATLAS physics program
- The high luminosity expected from the LHC necessitates increased trigger rejection to preserve acceptance
- The gFEX adds capability and flexibility to the ATLAS L1 Trigger
 efficient large-R jet finding
 - pileup suppression
 - "jets-without-jets" and other event shapes
 - centrality-dependent Heavy-Ion triggers
 - many possibilities for improved rejection using jet substructure
- First link speed tests between L1 and Calorimeter systems have been finished, allowing us to continue smoothly to the next steps

http://arxiv.org/abs/1306.4945

gFEX Interfaces and processing chain

Zynq provides configuration, slow control, monitoring and playback for gFEX

Vasiliki Kouskoura (BNL)

HEP 2016

12 May 2016