

Search for direct scalar b-quark pair production with the ATLAS detector

HEP2016 – Conference on Recent developments in High Energy Physics and Cosmology Thessaloniki, Greece

Evangelos Kourlitis

12.05.2016

Supesymmetry Overview

- > Theoretical framework beyond the Standard Model
 - $\cdot\,$ Predicts superpartners of the known particles Spin differs by 1/2
- > Offers solutions to known physics problems:
 - Hierarchy problem
 - Dark Matter candidate
 - \cdot Unification of forces

3rd Generation SUSY

- To protect Higgs sector from unnatural loop corrections the scalar partners of top and bottom quark should have mass O (TeV)
- Reachable by the LHC!
 - Enhanced production cross-section,
 Run 2 might be a game changer

A natural (and viable) SUSY mass spectrum

The pMSSM

> The Minimal Supersymmetric Standard Model implies 120 parameters

phenomenological

MSSM

Well motivated assumptions reduce the number of parameters to 19

EW measurements Assumptions Collider constrains on Experimental Constrains mass (LEP, Tevatron) Sparticles produced in *pairs* Dark Matter constrains R-parity^{*} Conservation The lightest (LSP) is *stable* (\tilde{x}_0^1) $(\Omega_{CDM}h^2 \text{ from Plank})$ $\widetilde{x}_{0}^{1} = N_{11}\widetilde{B} + N_{12}\widetilde{W}^{0} + N_{13}\widetilde{H}_{d}^{0} + N_{14}\widetilde{H}_{u}^{0}$ No additional FCNC Supersymmetry No new *LP* Parameters $\in \mathbb{R}$ MSSM 1st and 2nd Generation mass degeneracy pMSSM $P_{R} = (-1)^{3B + L + 2s}$

Where do we stand on pMSSM?

- After the assumptions, ATLAS generated >300k model-points
 - Random set of parameters selection •
 - Interpreted by 22 Run I analyses

arXiv: 1508.06608

0-lepton + 2-6 jets + E_{T}^{miss} 0-lepton + 7–10 jets + E_{T}^{miss}

1-lepton + jets + E_{T}^{miss}

3rd Generation onpl

Well captured sensitivity by simplified models

ATLAS

s=8 TeV, 20.3 fb⁻¹

 $\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$ [1308.2631]

600

400

800

m(b₁) [GeV]

1000

800

600

400

200

0^L

200

 $m(\widetilde{\chi}_1^0)$ [GeV]

pMSSM: $\tilde{\chi}_{L}^{0}$ LSP

1 0.8 Wodels Excluded

Fraction of 1

Most points excluded for stop mass bellow 600 GeV

For **sbottom** this limit drops to 550 GeV

3rd Generation on pM

Dark Matter and other fancies

Towards Run II

> Even with only 3.2 fb⁻¹ Run II was able to surpass important Run I limits

Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{q}\tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}^{0} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}^{0} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}^{0} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}\tilde{s}^{0} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}\tilde{s}^{0} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}\tilde{s}\tilde{s} \\ \tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}\tilde{s}\tilde{s}^{0} \\ \tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}$	$\begin{array}{c} 0\text{-3}\ e,\mu/1\text{-2}\ \tau \\ 0\\ \text{mono-jet}\\ 2\ e,\mu(\text{off-}Z)\\ 0\\ 1\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 2\ r,\mu\\ 2\ e,\mu\\ 7\\ \gamma\\ \gamma\\ 2\ e,\mu(Z)\\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 2 jets 2 jets 2 jets 2 jets 2 jets	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20.3 20.3 20.3 20.	ی ی ی ی ی ی ی ی ی ی ی ی ی ی	1.85 TeV 1.52 TeV 1.6 TeV 1.38 TeV 1.4 TeV 1.63 TeV .34 TeV 1.37 TeV 1.3 TeV	$\begin{split} & m(\tilde{q})\!=\!m(\tilde{g}) \\ & m(\tilde{q})\!=\!GeV, m(1^{st}gen,\tilde{q})\!=\!m(2^{sd}gen,\tilde{q}) \\ & m(\tilde{q})\!=\!GeV, m(\tilde{t}^{st})\!\!>\!\!5GeV \\ & m(\tilde{t}^{st})\!=\!0GeV \\ & tan\beta\!=\!20 \\ & cr(NLSP)\!<\!0.1mm \\ & m(\tilde{t}^{st})\!=\!85GGeV, cr(NLSP)\!<\!0.1mm, \mu\!<\!0 \\ & m(\tilde{t}^{st})\!=\!85GGeV, cr(NLSP)\!<\!0.1mm, \mu\!>\!0 \\ & m(\mathcal{I})\!=\!185GGeV, cr(NLSP)\!<\!0.1mm, \mu\!>\!0 \\ & m(\mathcal{I})\!=\!18\times10^{-4}eV, m(\tilde{g})\!=\!m(\tilde{q})\!=\!1.5TeV \end{split}$	1507.05525 ATLAS-CONF-2015-062 To uppear 1503.03290 ATLAS-CONF-2015-076 ATLAS-CONF-2015-076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1		1.78 TeV 1.76 TeV 1.37 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) {<} 800 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) {<} 300 \mathrm{GeV} \end{array}$	ATLAS-CONF-2015-067 To appear 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{k}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{k}_{1}^{+} \\ \tilde{i}_{1} \tilde{a}_{1}, \tilde{i}_{1} \rightarrow \delta \tilde{k}_{1}^{+} \\ \tilde{i}_{1} \tilde{a}_{1}, \tilde{i}_{1} \rightarrow \delta \tilde{k}_{1}^{0} \\ \tilde{i}_{1} \tilde{i}_{1}, \tilde{i}_{1} \rightarrow \delta \tilde{k}_{1}^{0} \\ \tilde{i}_{1} \tilde{i}_{1}, \tilde{i}_{1} \rightarrow \delta \tilde{k}_{1}^{0} \\ \tilde{i}_{2} \tilde{i}_{1}, \tilde{i}_{2} \rightarrow \delta \tilde{k}_{1}^{0} \\ \tilde{i}_{2} \tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z \\ \tilde{i}_{2} \tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + h \end{array} $	$\begin{matrix} 0 \\ 2 e, \mu (SS) \\ 1-2 e, \mu \\ 0-2 e, \mu \\ 0 \\ r \\ 2 e, \mu (Z) \\ 3 e, \mu (Z) \\ 1 e, \mu \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 mono-jet/c-t 1 b 1 b 6 jets + 2 b	Yes Yes Yes b Yes Yes Yes Yes Yes	3.2 3.2 20.3 20.3 20.3 20.3 20.3 20.3 20	840 GeV 1 325-540 GeV 117-170 GeV 200-500 GeV 90-198 GeV 205-715 GeV 90-245 GeV 150-600 GeV 1 209-610 GeV 2 209-610 GeV 2 320-620 GeV	GeV	$\begin{array}{l} m(\tilde{\xi}_{1}^{0})\!<\!100\text{GeV} \\ m(\tilde{\xi}_{1}^{0})\!=\!50\text{GeV}, m(\tilde{\xi}_{1}^{0})\!=\!m(\tilde{\xi}_{1}^{0})\!+\!100\text{GeV} \\ m(\tilde{\xi}_{1}^{0})\!=\!2m(\tilde{\xi}_{1}^{0}), m(\tilde{\xi}_{1}^{0})\!=\!55\text{GeV} \\ m(\tilde{\xi}_{1}^{0})\!=\!16\text{GeV} \\ 15\\ m(\tilde{\xi}_{1}^{0})\!+\!150\text{GeV} \\ m(\tilde{\xi}_{1}^{0})\!+\!150\text{GeV} \\ m(\tilde{\xi}_{1}^{0})\!=\!200\text{GeV} \\ m(\tilde{\xi}_{1}^{0})\!=\!60\text{GeV} \\ \end{array}$	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 068616, ATLAS-CONF-2016 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R,\tau} \stackrel{\mathcal{L}}{\to} \ell \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{1}^{-} \stackrel{\mathcal{L}}{\to} \ell \tilde{\mathcal{K}}_{1}^{(0)} \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{1}^{-} \stackrel{\mathcal{L}}{\to} \ell \tilde{\mathcal{K}}(\tilde{r}) \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{2}^{-} \stackrel{\mathcal{L}}{\to} \ell \tilde{\mathcal{K}}_{1}(\tilde{r}), \tilde{\mathcal{K}}_{L}^{L}(\ell \tilde{r}), \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{2}^{-} \stackrel{\mathcal{L}}{\to} \tilde{\mathcal{K}}_{1}^{(1)} \\ \tilde{\mathcal{K}}_{1}^{+}\tilde{\mathcal{K}}_{2}^{-} \stackrel{\mathcal{L}}{\to} \tilde{\mathcal{K}}_{1}^{+} \\ \tilde{\mathcal{K}}_{2}^{+}\tilde{\mathcal{K}}_{1}, \tilde{\mathcal{K}}_{2}^{-} \stackrel{\mathcal{L}}{\to} \tilde{\mathcal{K}}_{L}^{(1)} \\ \tilde{\mathcal{G}}_{1}^{-} \tilde{\mathcal{K}}_{1}^{-} \stackrel{\mathcal{L}}{\to} \tilde{\mathcal{K}}_{L}^{-} \\ \tilde{\mathcal{K}}_{1}^{-} \\ \tilde{\mathcal{K}}_{1}^{-} \tilde{\mathcal{K}}_{1}^{-} \\ \tilde{\mathcal{K}}_{1}^{-} \tilde{\mathcal{K}}_{1}^{-} \\ \tilde{\mathcal{K}}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 4 \ e, \mu \\ d. 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		$m(\tilde{k}_1^{\pm}) = m$ $m(\tilde{k}_2^0) = m$	$\begin{split} m(\xi^0_1) &= 0 \text{ GeV } \\ m(\xi^0_1) &= 0 \text{ GeV } m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\ell}_1^+) + m(\tilde{\ell}_1^0)) \\ m(\tilde{k}_1^0) &= 0 \text{ GeV } m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{k}_1^+) + m(\tilde{k}_1^0)) \\ n(\tilde{\ell}_2^0), m(\tilde{k}_1^0) = 0.0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{k}_1^+) + m(\tilde{k}_1^0)) \\ m(\tilde{k}_1^+) = m(\tilde{k}_2^0), m(\tilde{k}_1^0) = 0, \text{ sleptons decouple} \\ m(\tilde{k}_1^+) = m(\tilde{k}_2^0), m(\tilde{k}_1^0) = 0, \text{ sleptons decouple} \\ n(\tilde{k}_3^0), m(\tilde{k}_1^0) = 0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{k}_2^0) + m(\tilde{k}_1^0)) \\ cr<1 m \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 d 1403.5294, 1402.7029 d 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}\tilde{c}, \tilde{\mu}) +$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{c}$, long-lived $\tilde{\chi}_1^0 \tilde{g}, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{c}, \tilde{\mu} \gamma +$ GGM $\tilde{g}_{\tilde{g}}, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{c}$	$ \begin{array}{c} \chi_{1}^{\pm} & \text{Disapp. trk} \\ \chi_{1}^{\pm} & \text{dE/dx trk} \\ 0 \\ \text{dE/dx trk} \\ \tau(e,\mu) & 1-2 \mu \\ 2 \gamma \\ \text{displ. } ee/e\mu/\mu \\ \text{displ. vtx + je} \end{array} $	1 jet - 1-5 jets - - - μμ - ets -	Yes Yes - - Yes -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	* 270 GeV 495 GeV 850 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	1.54 TeV	$\begin{split} & m(\tilde{k}_1^+) - m(\tilde{k}_1^0) \sim 160 \; MeV, \; \tau(\tilde{k}_1^+) = 0.2 \; ns \\ & m(\tilde{k}_1^+) - m(\tilde{k}_1^0) \sim 160 \; MeV, \; \tau(\tilde{k}_1^+) < 15 \; ns \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; 10 \; \mu_{SC} < \tau(\tilde{k}_2^0) < 1000 \; s \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; r > 10 \; ns \\ & 10 < tang < 50 \\ & 10 < tang < 50 \\ & 1 < \tau(\tilde{k}_1^0) < 3n, \; SPS8 \; model \\ & 7 < \tau(\tilde{k}_1^0) < 740 \; mn, \; m(\tilde{s}) = 1.3 \; TeV \\ & 6 < \tau(\tilde{k}_1^0) < 480 \; mn, \; m, \tilde{s}) = 1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Bilinear \ RPV \ CMSSM \\ \tilde{\mathbf{x}}_{1}^{+}\tilde{\mathbf{x}}_{1}^{-}, \tilde{\mathbf{x}}_{1}^{+} \rightarrow WX_{0}^{0}, \mathbf{x}_{1}^{0} \rightarrow e\bar{\mathbf{v}}_{\mu}, e\mu \\ \tilde{\mathbf{x}}_{1}^{+}\tilde{\mathbf{x}}_{1}^{-}, \tilde{\mathbf{x}}_{1}^{+} \rightarrow WX_{0}^{0}, \mathbf{x}_{1}^{0} \rightarrow e\bar{\mathbf{v}}_{\mu}, e\mu \\ \tilde{\mathbf{x}}_{2}^{+}\tilde{\mathbf{x}}_{1}^{+}, \tilde{\mathbf{x}}_{1}^{+} \rightarrow WX_{0}^{0}, \mathbf{x}_{1}^{0} \rightarrow eq\mu \\ \tilde{\mathbf{x}}_{3}^{+}\tilde{\mathbf{x}}_{3} \rightarrow qq \\ \tilde{\mathbf{x}}_{3}^{+}\tilde{\mathbf{x}}_{3} \rightarrow \mathbf{x}_{1}^{+} \mathbf{x}_{1}^{0} \rightarrow bq \\ \tilde{\mathbf{x}}_{3}^{+}\tilde{\mathbf{x}}_{3} \rightarrow \mathbf{x}_{1}^{+} \mathbf{x}_{1}^{+} \rightarrow bq \\ \tilde{\mathbf{x}}_{3}^{+}\tilde{\mathbf{x}}_{3} \rightarrow \mathbf{x}_{3}^{+} \mathbf{x}_{3}^{+$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-3 <i>b</i> 	- Yes Yes - - Yes b -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	760 GeV 4 760 GeV 1 450 GeV 917 GeV 980 GeV 880 GeV 1 320 GeV 0.4.1.0 TeV	1.7 TeV 1.45 TeV	$\begin{split} \lambda_{311}' = & 0.11, \ \lambda_{132/133/233} = 0.07 \\ m(\bar{q}) = m(\bar{g}), \ c_{T_{2,F}} < 1 \text{ mm} \\ m(\bar{k}_{1}^{0}) > 0.2 \times m(\bar{k}_{1}^{-1}), \ \lambda_{121} \neq 0 \\ m(\bar{k}_{1}^{0}) > 0.2 \times m(\bar{k}_{1}^{-1}), \ \lambda_{132} \neq 0 \\ BR(i) = BR(k) = BR(c) = 0\% \\ m(\bar{k}_{1}^{0}) = 600 \text{ GeV} \end{split}$	1503.04430 1404.2500 1405.5086 1502.05686 1502.05686 1502.05686 1404.2500 1601.07453

Towards Run II

> Even with only 3.2 fb⁻¹ Run II was able to surpass important Run I limits

Overview (ATLAS-CONF-2015-066)

- > Search for direct scalar bottom quark pair production:
 - Final state consist of 2 b-jets and large missing transverse momentum

exclusion of large sbottom masses Sbottom pair production, $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ [GeV] Observed limit (±1 σ^{SUSY}_{theory}) ATLAS Expected limit (±1 σ_{exp}) $\stackrel{\text{``}}{E}$ 500 $\stackrel{\text{L}}{\vdash}$ Ldt = 20.1 fb⁻¹, \sqrt{s} =8 TeV CDF 2.65 fb⁻¹ All limits at 95% CL D0 5.2 fb⁻¹ 400 ATLAS 2.05 fb⁻¹, \s=7 TeV 300 200 100 200 300 500 600 700 800 400 100 m_{~~} [GeV] arXiv: 1308.2631

Analysis based on Run I strategy, targeting the

Run II analysis sensitivity gain
 by E_{CMS}, 8 → 13 TeV:

p

- Signal $\sigma_{\widetilde{b}\,(800\,GeV)}$ increase by factor of ~10
- Major background σ_{Z+Jets} increase by factor of ~2

Analysis Strategy

- \succ The decay products manifest themselves as $E_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$
 - Invariant mass reconstruction impossible
- Simple and robust Cut 'n' Count approach employed

Define Signal Regions based on a model

- Aiming to reduce background Discriminating variables used
- Optimized to provide maximum discovery significance

Validation Regions to verify the prediction

- Intermediate step between CR and SR
- Kinematically close but orthogonal to SR

Define Control Regions each targeting a specific background

- Normalize the MC prediction to match the yield
- Extrapolate the normalization factors using a combined likelihood fit

Open Pan<mark>dora's box</mark>

Compare the yield in SR with the SM prediction If no excess observed, derive exclusion limits on the model

Signal Region A – Bulk Region

- \succ Class of regions targeting large mass splitting between \widetilde{b} and $\widetilde{x}_1^{_0}$
- Containing: 0 leptons, 2 b-jets, large E_T^{miss}
 - $p_T > 10 \text{ GeV}$ 77% Ensure fully efficient efficiency E_T^{miss} trigger

- Main discriminating variable, contransverse mass:
 - For the decay of two identical massive particles to two visible (v_1, v_2) and two invisible: $m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2$
 - $\cdot~$ Kinematic end-point for ttbar m_{\rm CT} = 135 GeV

Ev	ent Selectio	٦	
SRA250	SRA350	SRA450	
No ba	aseline electron or n	nuon	
Leading	g (in $p_{\rm T}$) two jets <i>b</i> -t	tagged	+ NA
$p_{\rm T} > 12$	30 GeV for the lead	ing jet	
	$m_{bb} > 200 \text{ GeV}$		$\cdot \Delta \phi$ (
	$E_{\rm T}^{\rm miss} > 250 { m GeV}$		— mis
Veto or	$4^{\bar{t}h}$ jet with $p_{\rm T} > 50$	0 GeV	$\cdot E_T$
$m_{\rm CT} > 250 \text{ GeV}$	$m_{\rm CT} > 350 \text{ GeV}$	$m_{\rm CT} > 450 \text{ GeV}$	

- + Multijet "killers"
- $\Delta \varphi(j_1, E_T^{miss}) > 0.4$
- $E_T^{miss}/m_{eff} > 0.25$

Major Backgrounds

Signal Region B - Compressed Scenarios

- > Scenarios with small mass splitting between \widetilde{b} and \widetilde{x}_{1}^{0} lead to softer b-jets, SRA is no more sensitive
- Initial State Radiation recoiling against the sbottom system exploited to discriminate the potential signal
- > Containing a high- p_{τ} non-b-tagged jet, large E_{τ}^{miss} and additional b-jets

Lepton selection	No baseline electron or muon
Leading- $p_{\rm T}$ jet	not <i>b</i> -tagged, $p_{\rm T} > 300 \text{ GeV}$
SubLeading- $p_{\rm T}$ jet	b-tagged
$\Delta \phi(1^{\text{st}} \text{ jet}, E_{\text{T}}^{\text{miss}})$	> 2.5
JetVeto	$p_{\rm T}(4^{\rm th} {\rm jet}) < 50 {\rm ~GeV}$
$E_{ m T}^{ m miss}$	> 400 GeV

Event Selection

Shottom pair production b

Control Regions

- > Dedicated Control Regions for each dominant background
- > Due to kinematics, different CRs correspond to each SR type
 - **SRA**: Z+Jets, W+Jets, SingleTop, ttbar **SRB**: ttbar, Z+Jets
- > The rest of them are calculated using pure MC prediction

Alternative estimation: Data-driven using γ+Jets events

Alternatively: Z from Photons

- > Data-driven technique developed for cross-checking purposes
 - \cdot Exploiting the similar properties of the vector bosons Z and γ
- > Photons mimic the Z $\rightarrow \nu\nu$ decays:

faking $E_{_{T}}^{_{\text{miss}}}$ by vectorially adding the photon to real $E_{_{T}}^{_{\text{miss}}}$

- Re-weighted, using simulations, to account for Z and γ mass difference
- Corrected for any MC miss-modeling using
 Z → II events

$$N_{\rm SR}^{Z\nu\nu} = \int_{\rm X}^{\infty} \left(f_{CR\gamma}^{\rm data} - f_{CR\gamma}^{\rm non-\gamma \, MC} \right) \cdot \frac{1}{\kappa} \cdot R_{Z/\gamma}(p_{\rm T}(\gamma)) \ dm_{\rm CT}$$

Results

- The observed number of events in each CR is used in a combined likelihood fit to determine the SM background in SRs 345 40 ATLAS Preliminary
- Dominant sources of systematic uncertainties:
 - Experimental: JES (SRA), JER (SRB), b-tagging (both)
 - Theoretical: Z+Jets (25-50% of the total SRA unc.),

ttbar (~70% of the total SRB unc.)

50 SRB Signal region channels **SRA250 SRA350 SRA450** Ever Observed events 5 22 6 Fitted bkg events 40 ± 8 9.5 ± 2.6 2.2 ± 0.6 13.1 ± 3.2 Fitted *tt* events 0.9 ± 0.4 0.37 ± 0.16 0.06 ± 0.03 5.9 ± 2.4 Fitted single top events 2.1 ± 1.3 0.54 ± 0.37 1.2 ± 0.8 0.15 ± 0.10 6.3 ± 2.4 Fitted W+jets events 1.3 ± 0.6 0.41 ± 0.23 1.2 ± 0.6 NS 2 Fitted Z+jets events 30 ± 7 7.1 ± 2.4 1.5 ± 0.5 3.3 ± 1.4 Fitted "Other" events 0.7 ± 0.6 0.1 ± 0.1 0.02 ± 0.02 1.4 ± 0.4

Resulted Yields

Interpretation

- > The results are used to place exclusion limits at 95% CL on the supersymmetric mass plane Bottom squark pair production, $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$
- Simplified model used:
 - Only the sbottom quark and the LSP are kinematically accessible ~ 2
 - $\cdot BR(\widetilde{b} \rightarrow b + \widetilde{x}_1^0) = 1$

- Limit on sbottom mass stands at 800-840 GeV
- > Almost 200 GeV higher than Run I

Conclusions

- > Impact of ATLAS Run I searches on pMSSM
 - \cdot Few models with 3rd generation squarks lighter than 550-600 GeV remain
- Run II searches for direct bottom squark pair production using 3.2 fb⁻¹
 - $\cdot\,$ Final states containing 2 b-jets and $E_{_T}^{_{miss}}$
 - A *cut'n'count* analysis shows no excess above expected background → exclusion limits on a simplified model have been placed
 - \cdot \widetilde{b} masses up to 840 GeV have been excluded for \widetilde{x}_1^0 masses bellow 100 GeV
 - \cdot New paper investigating the SRA deficit is being published soon

Backup Slides

Object Definitions

	Variable	SRA	SRB
	Event cleaning	Common	to all SR
	Lepton veto	No e/μ with $p_{\rm T} > 10 {\rm ~G}$	eV after overlap removal
VRB ┥	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV	> 400 GeV
250 < E _T ^{miss} < 300	Leading jet $p_{\rm T}(j_1)$	> 130 GeV	> 300 GeV
	2nd jet $p_{\mathrm{T}}(j_2)$	$> 50 { m GeV}$	$> 50 { m GeV}$
	Fourth jet $p_{\rm T}(j_4)$	vetoed if	> 50 GeV
	$\Delta \phi^j_{ m min}$	> 0.4	> 0.4
	$\Delta \phi(j_1,)$	-	> 2.5
	b-tagging	j_1 and j_2	j_2 and $(j_3 \text{ or } j_4)$
	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.25
VRmctA ┥	$m_{ m CT}$	> 250, 350, 450 GeV	-
VRmbbA-	m_{bb}	> 200 GeV	-

Control Regions

Variable	CRzA	CRttA	CRstA	CRwA	CRzB	CRttB
Number of lep.	2 SFOS	1	1	1	2 SFOS	1
Lead. lep. $p_{\rm T}$ [GeV]	> 26	> 26	> 26	> 26	> 26	> 26
2nd lep. $p_{\rm T}$ [GeV]	> 20	-	-	-	> 20	-
$m_{\ell\ell} \; [{\rm GeV}]$	[76 - 106]	-	-	-	[76 - 106]	-
$m_{\rm T}$ [GeV]	-	-	-	> 30	-	-
Lead. jet $p_{\rm T}(j_1)$ [GeV]	-	> 130	-	> 130	50	130
4th jet $p_{\rm T}(j_4)$			vetoed if	$> 50 { m GeV}$		
b-tagged jets	j_1 and j_2	j_1 and j_2	j_1 and j_2	j_1	j_2 and	j_2 and
					$(j_3 \text{ or } j_4)$	$(j_3 \text{ or } j_4)$
$E_{\rm T}^{\rm miss}$ [GeV]	< 100	> 100	> 100	> 100	< 70	> 200
$E_{\rm T}^{\rm miss, cor}$ [GeV]	> 100	-	-	-	> 100	-
m_{bb} [GeV]	-	< 200	> 200	$(m_{bi}) > 200$	-	-
$m_{\rm CT}$ [GeV]	> 150	> 150	> 150	> 150	-	-
$m_{b\ell}^{\min}$ [GeV]	-	-	> 170	-	-	-
$\Delta \phi(j_1, E_{\mathrm{T}}^{\mathrm{miss}})$	-	-	-	-	> 2.0	> 2.5
Observed events	84	255	54	540	55	181
Fitted bkg events	84 ± 9	255 ± 16	54 ± 7	540 ± 23	55 ± 7	181 ± 13
Fitted tr events	4.7 ± 1.4	169 ± 25	8.3 ± 3.8	123 ± 29	14 ± 4	150 ± 15
Fitted single top events	0.4 ± 0.4	27 ± 13	22 ± 8	49 ± 25	0.4 ± 0.2	16.8 ± 2.9
Fitted W+jets events	-	52 ± 17	23 ± 6	350 ± 47	-	12.6 ± 4.9
Fitted Z+jets events	75 ± 9	2.3 ± 0.5	-	5.0 ± 1.6	41 ± 8	0.3 ± 0.1
Fitted "Other" events	3.6 ± 1.3	4.4 ± 0.9	0.8 ± 0.4	11.7 ± 2.1	-	1.3 ± 0.6
MC exp. SM events	54	283	56	491	49	196
MC exp. <i>tī</i> events	5.7	204	10	148	15	166
MC exp. single top events	0.5	34	28	62	0.4	17
MC exp. W+jets events	-	40	17	266	-	12.6
MC exp. Z+jets events	45	1.4	-	3.0	33	0.2
MC exp. "Other" events	3.6	4.4	0.8	11.7	-	1.3

24

Alternative Z+Jets from γ+Jets

Define high-purity photon regions to emulate SRs and VRs:

		CRyAx SRAx emulation	CRyA-mbb VRAmbb emulation	CR _γ B SRB emulation
Pre-selection		1	1	1
Trigger		HLT_g120_loose	HLT_g120_loose	HLT_g120_loose
Photons		1 signal	1 signal	1 signal
Leading photon	GeV	> 130	> 130	> 130
Leptons ($e \text{ or } \mu$)		0 baseline	0 baseline	0 baseline
Leading jet $p_{\rm T}$	GeV	> 130	> 130	> 300
$\left(E_{\mathrm{T}}^{\mathrm{miss}}\right)^{\gamma}$	GeV	> 250	> 250	> 400
m _{bb}	GeV	> 200	< 200	-
mCT	GeV	> <i>x</i>	> 150	-
b-jets (MV2c20 77%)		(1,2)	(1,2)	(2,3) or (2,4)

* The emulation of VRAmet is made with CR γ Ax; x = 0; with an upper cut on $m_{CT} < 150$.

2 Reweight
$$P_{\gamma}^{T}$$
 to P_{Z}^{T} to correct Z mass effects :
Final computation of the expected Z events in SRs (and VRs):
$$R_{Z/\gamma} dp_{T}(B) = \frac{f_{SR}^{Z\nu\nu+jets MC} dp_{T}(truth B)}{f_{CR\gamma}^{\gamma+jets MC} dp_{T}(reco B)}$$

$$R_{Z/\gamma} dp_{T}(B) = \frac{f_{SR}^{Z\nu\nu+jets MC} dp_{T}(truth B)}{f_{CR\gamma}^{\gamma+jets MC} dp_{T}(reco B)}$$
Final computation of the expected Z events in SRs (and VRs):
$$N_{SRAx}^{Z\nu\nu} = \int_{x}^{\infty} \left(f_{CR\gamma A}^{data} - f_{CR\gamma A}^{non-\gamma MC}\right) \cdot \frac{1}{\kappa} \cdot R_{Z/\gamma}(p_{T}(\gamma)) dm_{CT}$$
Note:
$$N_{SRB}^{Z\nu\nu} = \int_{0}^{\infty} \left(f_{CR\gamma B}^{data} - f_{CR\gamma B}^{non-\gamma MC}\right) \cdot \frac{1}{\kappa} \cdot R_{Z/\gamma}(p_{T}(\gamma)) dm_{CT}$$

3 Define an additional κ -factor based on loose CRs to measure the γ -Z normalisation:

$$\kappa = \frac{\mu_{\gamma,\text{loose}}}{\mu_{Z,\text{loose}}} = \frac{N_{\text{CR}\gamma\text{L}}^{\gamma+\text{jets,data}}}{N_{\text{CR}z\text{L}}^{Z+\text{jets,data}}} \cdot \frac{N_{\text{CR}z\text{L}}^{Z+\text{jets,MC}}}{N_{\text{CR}\gamma\text{L}}^{\gamma+\text{jets,MC}}} = \frac{N_{\text{CR}\gamma\text{L}}^{\text{data}} - N_{\text{CR}\gamma\text{L}}^{\text{non-}\gamma\text{ MC}}}{N_{\text{CR}\gamma\text{L}}^{\text{data}}} \cdot \frac{N_{\text{CR}Z\text{L}}^{Z+\text{jets,MC}}}{N_{\text{CR}\gamma\text{L}}^{\gamma+\text{jets,MC}}}$$

Table 5: Left to right: 95% CL upper limits on the visible cross-section ($\langle \epsilon A \sigma \rangle_{obs}^{95}$) and on the number of signal events (S_{obs}^{95}). The third column (S_{exp}^{95}) shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions on the expectation) of background events.

Signal channel	$\langle \epsilon A \sigma \rangle_{\rm obs}^{95}$ [fb]	$S^{95}_{ m obs}$	$S_{\rm exp}^{95}$
SRA250	2.74	8.8	$15.8^{+6.3}_{-4.4}$
SRA350	1.90	6.1	$8.1^{+3.7}_{-2.3}$
SRA450	1.16	3.7	$4.4^{+2.6}_{-1.0}$
SRB	1.57	5.0	$8.5^{+3.9}_{-2.4}$