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What is particle physics?

“The study of fundamental particles and their properties”
- Collins dictionary

» What are fundamental particles?

» Democritus (460 — 370 BC): Ancient Greek
Philosopher
» Everything is made up of atoms

(atomos — “that cannot be divided”)

> And now ...?
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The atom

> The atom is not fundamental
> A dense nucleus
» Cloud of orbiting electrons

» The nucleus contains protons and
neutrons

» Made up of quarks

<

» As far as we know, quarks and
electrons are fundamental
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The scale of things
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Interactive version: http://htwins.net/scale2/
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The Standard Model

Required to build atoms

Produced in cosmic rays

Produced in radioactive decays

The particles required to
build all visible matter

lectron neutrino

tons
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» The classical equation of motion:
|
2
E=—myv
2

» Equation of motion based on
Einstein’s theory of relativity:

2 2 2 2 4
E-=pcc+m’c

: ) Paul Dirac — predicted the existence of
> Quadratic => two solutions the positron in 1928: antielectron

> Anti-matter

» Anti-particles: Same mass, opposite charge
(+ other quantum numbers)
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» Attempts in the 1920s to measure the magnetic field generated by
electrons orbiting atomic nuclei showed

» Electrons act as if they are spinning rapidly
» Produce a tiny magnetic field (“magnetic moment”) as a result

IIUp”
» This became known as spin
“Down”

» Then we add the Quantum Mechanics and it gets really weird
» Size of magnetic moment is much bigger than expected
» Only discrete values of spin are allowed

» But it is important — influences chemistry and solid-state physics
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Electro

Magnetic Required to
construct atoms

Ex.p:rlenced by Ia” p;f\rtlcles Experienced by all particles
V\;:t non-zero electric with “colour charge”
charge =» Quarks

=» Quarks and leptons
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The fundamental forces

Required for radioactivity

Experienced by all
particles with “weak
charge”

=» Quarks and leptons

Matter particles experience forces through the exchange of
the “force carriers” or mediators
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» The relative strength of each force quantified by the coupling constants

» An example: The electromagnetic force

F = 9,9> Coupling Constants
dre,r ’ Strong Cg || 1
ez Electromagnetic|| ¢ |([1/137
o = :
4 7ve, i Weak Oly | 10°6
(04 Gl'a\'i[y Oig 10 39
F = —2
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Feynman Diagrams

Feynman diagram for
like charge repulsion

Primitive
Vertex
4 “lowest order”

or
o
tree leve

I”

’ SPACE A line which begins and ends in
Solid line 9 the diagram represents a
for particle “virtual particle”. In this case

it is avirual photon.
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» Coupling “constant” — the interaction strength varies with
energy(distance) Resolution [m]

107 10" 10® 10® 10"
1 R T o S i R i Ty
Strength :
100+
» Known as the running couplings
> Where does this behaviour
come from? 104

0 ; ¥ ¥ } } ¥ 3 } #

0 1¢° 10° 1d* 1d*  1d?
f Energy [GeV]
LEP
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> Consider an electron in a dielectric medium

» Dielectric reduces apparent charge of the
electron (polarisation)

» Known as charge screening @ O

O AN

» Charge screened by vacuum polarisation
» High E = smaller distances = “see” more charge

» EM force strength increases with E

16th February 2016 CERN UK Teacher's Programme 20
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» Charge screened by vacuum polarisation

» Force strength increases with E

» Non-abelian forces (weak, strong) also include
these “extra’ charge loops

» Higher E => smaller distances => see less '
charge

» Net effect: Force strength decreases with E
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O 024 CMS incl. jets : ag(M ) =0.1185'0%%%° -
w |, Z -0.0042 —
S 0.22F 4 CMS Ry, _—
N - CMS tt cross section _
0.2F ‘%:\, . CMS inclusive jets —
— ﬁ v CMS 3-Jet mass =
0.18— -

= “Asymptotic freedom”

“Confinement”

When quarks are close
together, they essentially
behave as if they're free

Quarks are always
bound inside

hadrons : 7
0.1 :— s DO inclusive jets { _:
— o DO angular correlation .
0.08— & H1 =
— ) ZEUS —
0.06— | | —
10 107 10°

< Increasing distance Q (GeV)
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Implications for the Strong Force

> Confinement leads to hadronisation

» Quarks and gluons produced in interactions combine to form
hadrons

16th February 2016 CERN UK Teacher's Programme 23
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Helicity and Parity

» Helicity or the “handedness” of a particle is based on its spin relative to
the direction of motion:

Right-handed Left-handed

» Parity is an operation that switches right-handed particles for left-
handed ones and vice versa

» Creates a mirror image

16th February 2016 CERN UK Teacher's Programme 24
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Weak interactions

» Parity is conserved in Strong and EM interactions
» Parity violation observed in weak interactions

» Quarks change flavour in weak interactions: n—>pe ¥,

N
o | | 9 e

» Explain this using the Cabibbo-Kobayashi- & W- <

Maskawa mechanism: @ Ve
N fvov v/
((/ V wd V ws V ub (/\
Mass states J | = 1( . V. ‘( " g Flavour states

\0') \ Ve Vis Vi) \b)

16th February 2016 CERN UK Teacher's Programme 25



The CKM Matrix

> What does the CKM Matrix mean? o
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Vea Ves Vap O

» Each element describes the probability of

a transition from one quark flavour to d S b
another

» CKM matrix is a unitary matrix u H
»VWil=VwT =1,

B4

VV. +V.V. +V.V =0

ud " ub td " tb

*

ViVis +ViVie + VoV =0 t

s " us
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» Observed that both parity and “charge conjugation” (particles €=» anti-
particles) were violated in weak interactions

» Physicists therefore looked to the combined CP operation to restore
symmetry

: g ga D ot P oD g
A é | C . QJ_&”__ \r
adnd 3 Wki
B <l % R« : \!
’\ W » 1
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CP violation Bk nversy

» Observed that both parity and “charge conjugation” were violated in
weak interactions

» Physicists therefore looked to the combined CP operation to restore
symmetry

» CP was shown to be violated by studying neutral Kaons
» K@ is its own anti-particle = “mixing”
» Mass states give us a K° with a short lifetime and another with a long
lifetime

16th February 2016 CERN UK Teacher's Programme 28
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This is interesting, but why is it important?

Matter-Antimatter Asymmetry
» The Big Bang produced equal amounts of matter and antimatter
» Today, the Universe is matter dominated
» What happened?

Need processes in which matter and antimatter behave differently to
account for this:

> CP violation

The amount of CP violation so far observed is insufficient to explain the
asymmetry

The Standard Model accommodates CPV, but does not have a natural
explanation for it ...



» Use the CKM
matrix to study
CP violation

(Vit Ve Vi)
Vet Ves Vi

\x,;(, Vise Vi )

1—A2%/2 A

) 1—\2/2
—A)N?

AX3(1 = p —in)

16th February 2016

University
London

Brunel ‘

L2 T L2 L ' T T T

L w0 ' -
3 AL U il

06 =/ : Amd £K EPS 15 ]
P ? =
= - .
05 —z sin2p ; —
. n 3 d.wi'cs 3 —

- ‘Ul . wxd atCL /] :

0.4 ‘—é : —
—_ ‘9 ’ —

— @ : -

03 :_ x _:
» (x -

02 = —
- [ Vel .

0.1 — —
- B ]

o-o = L (11 l L L L A l A A A . A A A l A A " l " -
04 -02 0.0 0.2 0.4 0.6 0.8 1.0

AN (p — 1)
AN?
1

d

(0,0) (1,0)

CERN UK Teacher's Programme 30



Electroweak unification A% | University

London

Brunel ‘

» W* boson has electric charge => suggests a connection between the
Weak and Electromagnetic forces

» In the 1960s Glashow, Weinberg and Salam demonstrated that these
forces are actually one single Electroweak force

» Won the 1979 Nobel Prize for Physics
» W and Z bosons were experimentally observed in 1983 at CERN

» But ... How can one force accommodate both a massless mediator (the
photon) and two massive mediators (the W and Z bosons)?
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Electroweak Symmetry Breaking [ JutEs

» Theoretical framework for the entire Standard Model requires that
“gauge symmetry” is preserved

» This requires all particles to have zero mass
» Clearly this is not true in reality!

» We need to break this symmetry without messing up the rest of the
Standard Model

» This is where the Higgs Mechanism comes in
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The Higgs Mechanism

» Introduces a Higgs field:
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At the Big Bang
Massless bosons

G

Shortly after (10-1%s) »
spontaneous symmetry 4&_‘ \

breaking occurs = ) \’
. ‘ Im(¢)
Massive bosons ———
Re(¢) l

» Particles (fermions and bosons) gain mass from interaction with the field
» Higgs boson is a by-product of the existence of the Higgs field
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The Standard Model

» The Standard Model is very successful

» Very accurate predictions that have been experimentally verified

> How do we test the Standard Model?
» Through experiment
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Jan20t6 CMS Preliminary

i 7 TeV CMS measurement (L < 5.0 fb™)
S S A A i 8 TeV CMS measurement (L < 19.6 fb™)
Cmo o i 13 TeV CMS measurement (L < 1.3 fo™)
S Theory prediction
A S S S S S A S Z CMS 95%CL limit

—
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Production Cross Section,

Everythmg |s m 1
goodshape "7,
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All results at: http://cern.ch/go/pNj7 "EW: Wb, 21, ke Th. Acy, in exp. Ao
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The Standard Model

» The Standard Model is very successful
» Very accurate predictions that have been experimentally verified

> How do we test the Standard Model?
» Through experiment

» How do we conduct an analysis of collisions provided by the LHC?
» Use Higgs boson analysis as an example
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» Charged particles
» Anything with an electric charge

» Electrons & photons

> Collectively known as “electromagnetic particles” %

» Anything made of quarks
» Collectively known as “hadronic particles”

> Muons

16th February 2016 ' S CERN UK Teacher's Programme 37
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Higgs Hunting O Loty

1T =T Y | f——T " :
» The Higgs mechanism g F bb_ Ww M;
does not predict whatthe 5 | \—/ 12
mass of the Higgs boson g ~ 9
should be ... o 101 s = +4
o - 2z ]
» m
S
» So how do you find a p

Higgs if you don’t know 102
where to look?

IlIIIIl

] lJlllll

2

-3 1 1 1 1 1 1 | 1 1 1 1 1 | 1
10" 300 120 140 160 180~ . 200
n [GeV]

» Look for signatures in the data that could be produced by the Higgs and
compare them to what is expected from the SM without the Higgs

» Excess number of events in data = something new ...
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Finding the Higgs Boson 3k verery
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Courtesy of Edinburgh

» Using these techniques, many

' | b ) D¢ U@P)“J—LFW
experiments have looked for the B = pcan g

Higgs ... B 4 N W s

£ \) =~ ?/-‘t() X /.’QS' @”;P."‘,\\

M~ <

Tevatron Run Il Preliminary, L <10.0 fo™

Expected w,o Hiaas Tevajron - Exclusion

PR S — Prior to July 2012, the most concrete
sighting of the Higgs ...

10 |5 g

95% CL Limit/SM

- i | € The state of play in June
% T 2012

1 > <A
“““““““ HA wlsxcua*si;a IIIIJT And then one month later?
L | P |
100 110 120 130 140 150 160 170 180 190 200
m, (GeV/c?)
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Why “Higgs-like”?

» What is it that we found?
» A boson with spin # 1 and mass approximately 125 GeV

» Appears to decay as expected for the SM Higgs boson

» But that is all we knew in July 2012!

» There is more than one model that predicts the existence of the Higgs

» There are other models that can explain the masses of fundamental
particles (and predict the existence of new bosons)

» But they do not use the Higgs mechanism

» So what do we know now?
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And now ...?

London
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£ LHC Run 1 Preliminary i ATLAS Prelim. | —ofstat)  Total uncertainty
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g 10 E e SM Higgs boson g E H— vy -023
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Everything is consistent with the
properties of a Higgs boson

We are now willing to call it “a” Higgs -

boson R
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Why “a” Higgs boson?

» We know this can’t be the end of the story

» Higgs mechanism was added to the Standard Model
“by hand”

» We'd like a theory that naturally includes it

» There are also problems with the mass of the Higgs ...
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» The problem is known as the Hierarchy problem

» Quantum corrections mean that the Higgs should be much heavier
than ~125 GeV

» Consider putting an ice cube somewhere hot

» |If we’d put it in the oven, we’d be really
surprised if it hadn’t melted after 10 mins

» Highly improbable

» We expected the Higgs to have a similar mass to the W and Z, which it
does

» But the theory says this is highly improbably

» How can we explain this?
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Beyond the Standard Model University

» |In order to explain the Higgs mass, we need to go beyond the Standard
Model

» We also need to answer some other basic questions like:

»Why are there only four forces ?
»Why is there a matter-antimatter asymmetry ?
»What are dark matter and energy ?

»Why are there only three generations ?
> ...
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Beyond the SM: The contenders [ Rale

Particles

» Supersymmetry
» Includes 5 Higgs bosons

» Unifies forces at very high energies
» Provides a candidate for dark matter
» Solution for the “hierarchy problem”

Supersymmetric “shadow” particles

» Extra dimensions
» Framework for including gravity in the SM
» Solution to the “hierarchy problem”

» Technicolour, Little Higgs, Hidden valley
models, ...
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Summary of CMS SUSY Results* in SMS framework
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» Re-start of running in 2015: First look at data at centre-of-mass energy
of 13 TeV

= 10°E L L L L B L B B 3

» Many new results « - ATLAS Preliminary ~ T_2o0ed ]

. . X i {s=13TeV,3.2f0" %i;i ]

» One caused some interest: 2 10°F =

> Diphoton resonance search s | ]

- = =

. CMS Preliminary 26" (13T - :

€ L k=02 =) I i

=t - -- Expected limit 1= E

T " +10 O - .

- +20 PN - ]

(? 40: —— Observed limit 'é% 1" | | | | | | | | |_

g Gg—>¥Y (LO) 10" ""500 400 600 800 1000 1200 1400 1600 1800

.é - m, [GeV]
E): 20 > 3.60 excess in ATLAS data

5 100 > 2.60 excess in CMS data

» Combines to ~40
2x10° 3><1ng Gevy > Interesting, but we need more data
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LHC Run 2 ; riversity

» Re-start of running in 2015: First look at data at centre-of-mass energy
of 13 TeV

= 103§ LA LN BN BN B BN BN

» Many new results « - ATLAS Preliminary ~ T_2o0ed ]
r B A +t1o 7

> One caused some interest: T 10E fom ooy a2 e
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Parity Violation

A\

Parity conserved in EM and Strong interactions

A\

In 1956 Lee and Yang proposed that parity should be violated in weak

interactions
» Experimentally confirmed in 1957 by Wu et al.
Mirror plane
Original Mirror-reversed
arrangement arrangement

» Study beta decay of Co®® I I

() l Predicted direction
of beta emission if

| parity were conserved

[0
]
Preferred direction ’
of beta ray emision

S S
B

» If parity conserved, expect to see
equal amounts of e- in each direction

Observed direction

[\ flow through the |\ mirror-reversed

1
solenoid coils 1 arrangement
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Coverage around the world

» Approximately 0.5 Million people watched the seminar live

» More than 1 Billion people saw highlights of the seminar
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Fabiola Gianotti

4 July 2012 Last updated at 08:35

Higgs boson-like particle discoven
clalmed at LHC
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By Paul Rincon
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Higgs boson: it's unofficial! Cern Higgs and the holy grail of physics

By Lawrence M. Krauss, Special to CNN

scientists discover missing particle Sy 5, 2012 - Updatod 1507 GMT (2307 HKT)

'God particle' that gives mass to the universe thought to have
been found in Large Hadron Collider, announce scientists

Sans

Comic

lan Sample at Cern, Geneva
guardian.co.uk, Wednesday 4 July 2012 09.42 BST
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What is a “cross section”? bk | Uiversity

» The probability that two particles will collide and react in a certain way

» Why do we call this a cross section?
» Originally thought of particles as tiny, indestructible balls

» Fundamental particles so small, impossible to aim them at each other
precisely

Collision probability = ratio of area of projectiles to total area of the cloud

Subsequently realized the analogy isn’t the right one, but the name stuck
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Reliable predictions from QCD only when a. is small:

=>» Q (the “scale”) has to be large

1/

3 Lol ol

2do
deesini This is known as the perturbative QCD regime (pQCD) [

Quarks 3
JeNeRl; Confinement occurs when o is large:
hadrons » Cannot use pQCD to make predictions

sentially
‘re free

» Have to rely on phenomenological models
0.08 « Wt
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10 107 10°
< Increasing separation Q (GeV)
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