FEDERICO CARMINATI

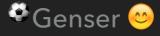
JAN 25, 2016

SIMULATION POW 2016

DISCLAIMER

- Items are NOT in order of priority
- People are NOT in order of importance
- People mentioned on the same task may NOT contribute to it at the same level
- I focused on the SFT work, FNAL contribution is not properly described

THE SIMULATION TEAM 2016


- Ananya[®], J.Apostolakis, M.Bandieramonte, G.Cosmo, G.Folger, M.Gheata[™], A.Gheata[™], I.Goulas, F.Hariri, D.Konstantinov[®], H.Kumawat N.V.Ivantchenko, T.Nikitina, M.Novak, W.Pokorski, A.Ribon, R.Seghal[®], O.Shadura, S.Vallecorsa[™], S.Wenzel[™])
- ▶ People who left⊗: A.Arora®, A.Bhattacharyya®, Y.Zhang
- ▶ People leaving®: Ananya[®] (Mar 16), R.Seghal[®] (Sep 16), S.Wenzel[™] (Mar 16)
- ▶ People arrived⊚: Ananya[®], A.Arora, D.Konstantinov, M.Bandieramonte, M.Gheata^{††}, R.Seghal[®], Y.Zhang, S.Vallecorsa[®]
- People arriving: H.Fariri (Fellow, Mar 16), H.Kumawat (Mar 16)

ACHIEVEMENTS 2015

GEANT4 HADRONIC PHYSICS

- Refactoring of hadronic XS code for better maintainability (W.Pokorski)
 - Code & doc review, migration to Glauber-Gribov model reproducing k asymmetry observed by LHCb
- Further upgrade of de-excitation module: physics, CPU, memory (V.Ivantchenko)
 - ▶ Release of new model of nuclear gamma de-excitation based on the same database as radioactive decay
- Overhaul of the QGSM model (A.Ribon with V.Uzhinskii)
 - Improvements to the string model (FTF & QGS) codes

GEANT4 ELECTROMAGNETIC PHYSICS

- Web-based tools to handle EM testing suite (A.Bagulya, V.Ivantchenko)
 - Web interface to the data in afs (revival & update of an old code)
- Maintenance of EM package focused on LHC (V.Ivantchenko)
 - Completed EM migration to MT (including PAI)
 - Simpler steering of EM parameters
- Kawrakow-Bielajew Goudsmit-Saunderson & PENELOPE multiple scattering models (M.Novak, V.Ivantchenko)
 - Improved and extended models for single and multiple scattering
 - Goudsmit-Sanderson for e-/e+ MS, theory based & better accuracy and speed

GEANT4 GEOMETRY

- Review and improvement of safety calculation in MT (J.Apostolakis)
 - Postponed to 2016
- Issues from ALICE geometry, ATLAS & g-2 transport (J.Apostolakis)
 - ▶ Ffixed it (the effort needed is the reason for the postponements!!)
- Multi solid-type parameterisations in MT (J.Apostolakis, G.Cosmo)
 - ▶ Enabled multi-threading for any kind of volume parameterisations and divisions
- Improved verbosity in Navigation (to aid in debugging) (J.Apostolakis, G.Cosmo)
 - ▶ Done
- Parallel Navigation performance / robustness (J.Apostolakis)
 - Postponed 2016
- > Replace Usolid shapes with VecGeom ones and test them with Geant4 (G.Cosmo, T.Nikitina, FNAL)
 - ▶ Implemented and extended new interface to VecGeom/USolids as external independent library

GEANT4 SERVICES

- Support for GDML, ROOT I/O (W.Pokorski, G.Cosmo)
 - New GDML version with extended module and schema to support (also) regions&cuts
 - Geometry persistency for Geant 10 (MT) & ROOT 6
- Release coord, building & installing, nightly & cont testing (G.Cosmo, G.Folger)
 - Rel 10.2 & monthly ref tags (afs & cvmfs, 9.6.p04, 10.0.p04, 10.1.p01, 10.1.p02)
 - Set up puppet based machines
 - ▶ Asked LHC for a "reasoned schedule" of releases conclusion: our schedule is *perfect* ⊕

GEANT4 SERVICES

- Coordination of the C++11 task-force (G.Cosmo coord, W.Pokorski, G.Folger)
 - Defined strategy for migration to selected C++11 features & started implementation
- Migration of Geant4 web to Drupal (G.Folger)
 - ▶ Test site setup, mirroring tested... will be finished in 2016
 - G4 tagsdb migrated from Drupal to afs webserver
 - ▶ tagsdb web interface tested expected 1Q16
- Migration to Jenkins (G.Folger, O.Shadura, P.Mendez Lorenzo)
 - ▶ Done including nightly & continuous, new platforms and support to shifters

OTHER PROJECTS

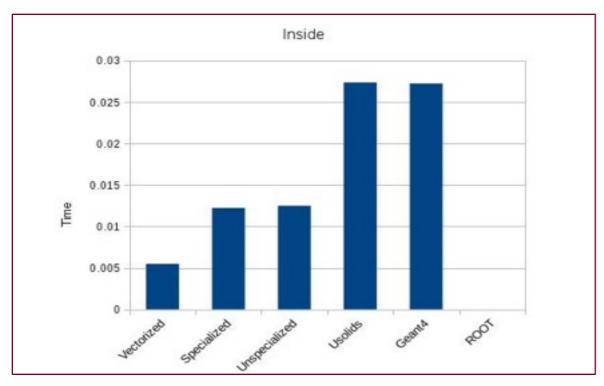
- Coordination of GENSER (W.Pokorski, D.Konstantinov)
 - ▶ Regular releases of MC generators integrated with LCG external software
- Coordination of HepMC3 development (W.Pokorski, D.Konstantinov)
 - Beta releases for experiments test
 - ▶ Improvement of ROOT I/O
- Validation DB (W.Pokorski, A.Ribon, D.Konstantinov, G.Folger)
 - Review & re-implementation of the validation DB@FERMILAB
 - ▶ Implementation of API allowing applications to directly access the DB

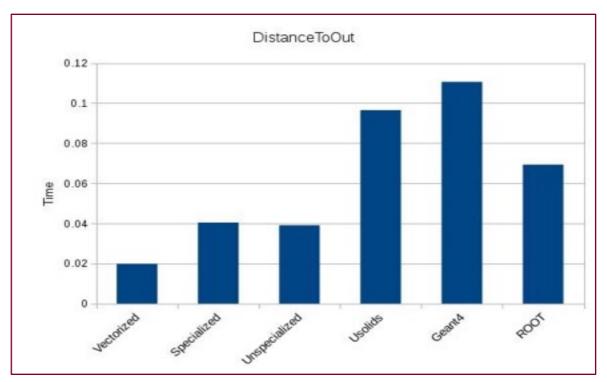
OTHER ACHIEVEMENTS

- Grid testing and validation (G.Cosmo, W.Pokorski, D.Kostantinov)
 - Monthly tag validation campaigns (published on web service http://g4-val.cern.ch)
- Field stepper (J.Apostolakis)
 - GSoC student development of high order Runge-Kutta (reduction of up to 20-40% in # of calls)
- Random number generator (G.Cosmo)
 - ▶ Review of existing methods and introduction of MixMax engine, interfaced to CLHEP
- Code maintenance (G.Cosmo)
 - ▶ Coordinate & contribute to cleanup of coverity defects & check for unending loops
- CMS production with Geant4 10.0p03+patches MT (V.Ivantchenko)
 - ▶ Coordinated CMS-sim releases, used to produce ~8 B G4 events@13 TeV
 - New Geant4 10.1 and 10.2 tested within CMSSW

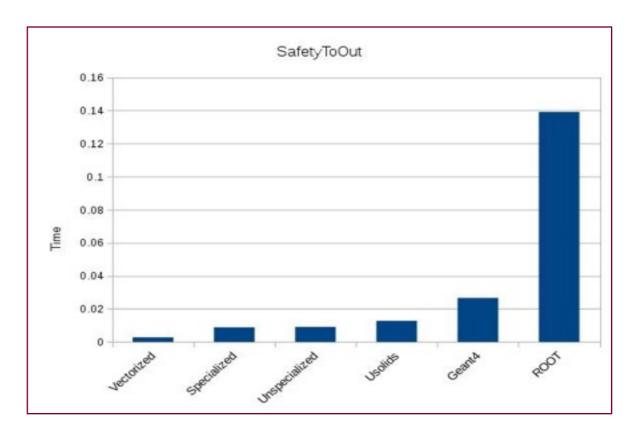
GEANTY THE BIG PICTURE

- ▶ Demonstrate substantial speedup for a LHC-size detector by 2H15 with the following features
 - ▶ Functional navigation ⊕
 - ▶ Full tabulated physics ⊕
 - Generator interface
 - Vectorised e-gamma
 - I/O of hits, digits & kinematics @
 - Working on x86, Xeon Phi (acc / full port), NVIDIA (acc)
 - Vectorised Multiple Scattering and Mag field transport <a>
 - Example of "fast MC"
 - Code repo, build & test environment @

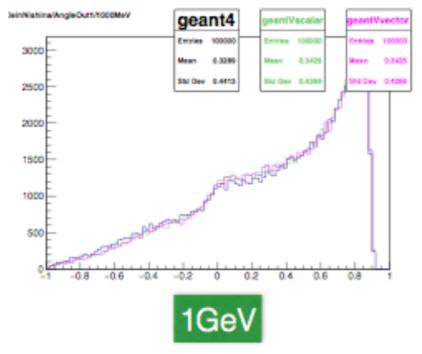

GEANTV SCHEDULER

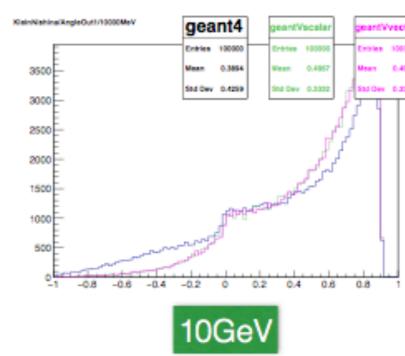

- ▶ Improve CPU/GPU synchronisation mechanism (FNAL, A.Gheata, S.Wenzel)
 - Major process in this area, tracks & geometry can be exchanged
- Redesign of concurrent basket filling, reduce contention & memory footprint (FNAL, A.Gheata)
 - Done, see next slides
- Concurrent hits and digits (A.Gheata, W.Pokorski)
 - ▶ Concurrent output "hits" with TMemoryFiles merging, good scaling with number of threads
- Kinematics format and I/O (A.Gheata, W.Pokorski)
 - ▶ Interface to generic HepMC3 event input
- Investigate data structures: SOA⇔AOSOA (FNAL, A.Gheata, S.Wenzel)
 - Done, see next slides

GEANTY GEOMETRY & USOLID

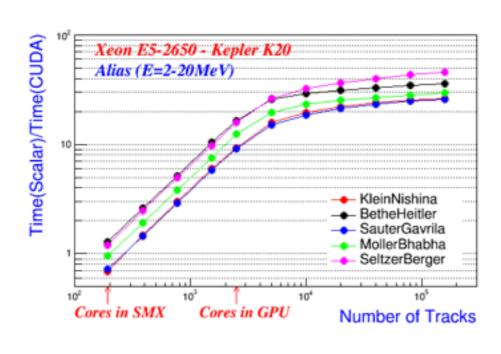

- Provide functional navigation in CMS2015 (G.Cosmo, A.Gheata, S.Wenzel, Y.Zhang)
 - Done and validated (steb-by-step)
- Refactoring, optimisation, memory reduction, I/O for Xeon Phi (S.Wenzel)
- ▶ Develop optimised voxelisation (R.Brun, G.Cosmo, S.Wenzel)
 - Different voxelisation strategies implemented and benchmarked
 - Static analysis choice of "best strategy"
- VecGeom primitive solids (A.Bhattacharyya, G.Cosmo, M.Gheata, T.Nikitina, R.Sehgal, S.Wenzel, FNAL)
 - ▶ Implemented most solids & extensive work on validation and "convention checkers"
- ▶ Simple visualisation with threejs (A.Gheata, I.Goulas, S.Wenzel)
 - First version completed

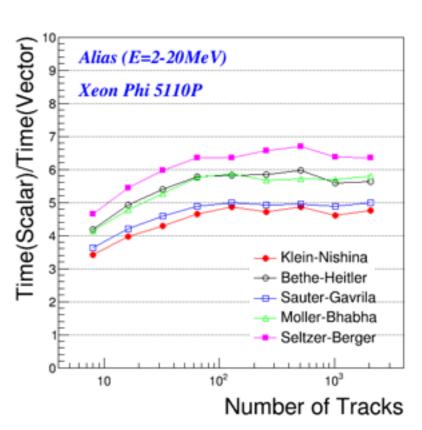
BENCHMARK RESULTS FOR CONE COMPARED TO EXISTING LIBRARIES

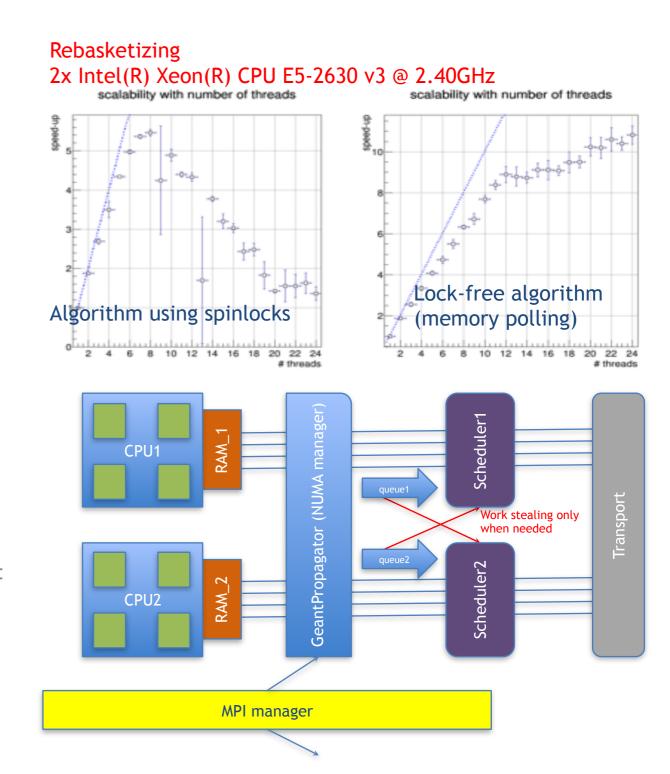


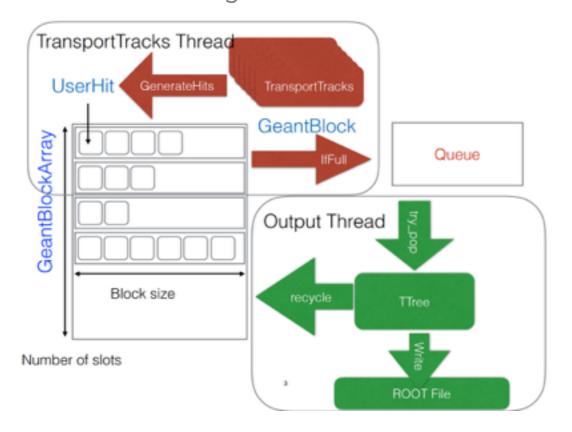

GEANTV PHYSICS

- Develop vectorised bremsstrahlung, energy loss and ionisation models (J.Apostolakis, M.Bandieramonte, FNAL, M.Novak)
 - Vectorised version of G4 code implemented and validated
 - "Alias sampling" implemented and studied, developed alternative approaches
- Vectorised version of multiple / elastic scattering (V.Ivantchenko, M.Novak)
 - ▶ Postponed to 2016
- Maintain tabulated physics (F.Carminati, M.Novak)
 - Code moved to Geant4 10 and improved
- Vectorised Runge Kutta in EM field (J.Apostolakis)
 - Scalar version ready and tested but not yet vectorised

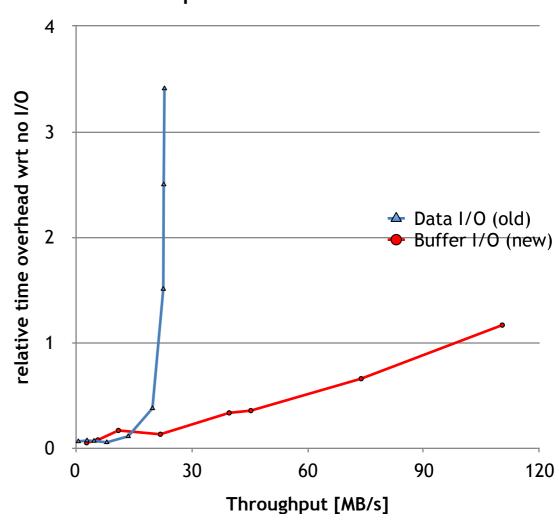

SOME PHYSICS BENCHMARKS


 Validation of Klein-Nishina Compton implementation


 Vector speedup of Alias method implementations of e-/g processes


BASKETIZER PERFORMANCE AND IMPROVEMENT PLANS

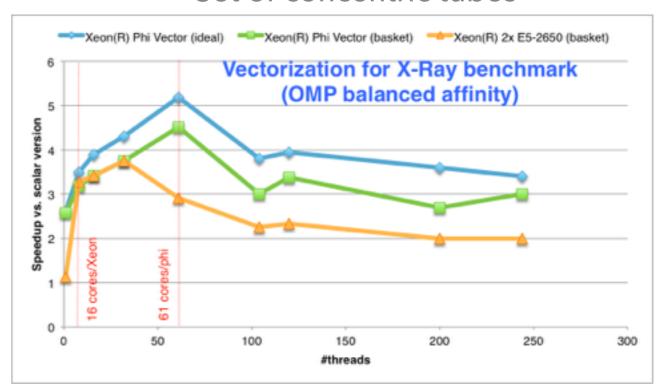
- Investigated different ways of scheduling & sharing work - lock free queues, ..
- Sequential fraction still large, due to high rebasketizing load (concurrent copying)
 - ► O(10⁵) baskets/second on Intel Core i7TM
 - Algorithm already lock free
 - Rate will go down with physics processes
- Milestones 2016 to improve scalability
 - Re-use baskets in the same thread after step if enough particles doing physics-limited steps
 - Use AOS re-basketizing converted to SOA for transport
 - Clone scheduling in NUMA aware groups, important for many cores (e.g. KNL)


RESULTS: HITS/DIGITS I/O

- "Data" mode
 - Send concurrently data of arbitrary user type to one thread dealing with full I/O

- "Buffer" mode
 - Send concurrently memory files produced by workers to one thread dealing with merging/write to disk

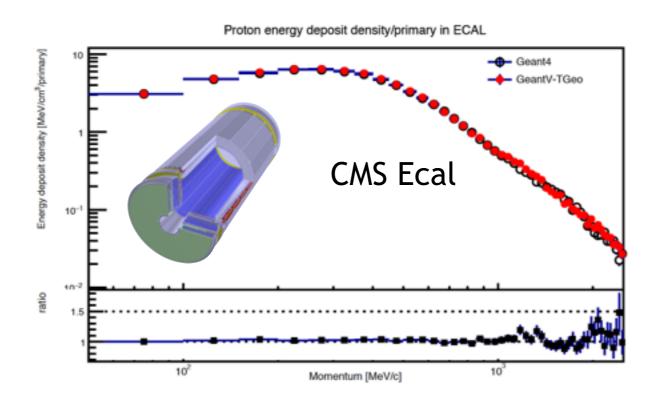
GeantV concurrent I/O 8 data producer threads + 1 I/O thread



2x8 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz Samsung SSD 850 PRO 512GB

VECTOR PERFORMANCE — X-RAY BENCHMARK

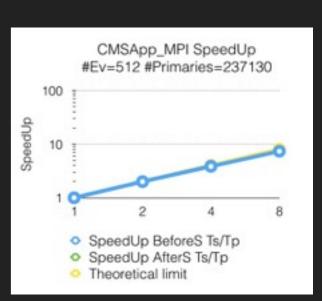
- Gaining up to 4.5 from vectorization in basketized mode
 - Approaching the ideal vectorization case (when no regrouping of vectors is done).
- Vector starvation starts when filling more thread slots than the core count
 - Performance loss is not dramatic
 - Better vectorization compared to the Sandy-Bridge host (expected


Set of concentric tubes

- Scalar case: Simple loop over pixels
- Ideal vectorization case: Fill vectors with N times the same X-ray
- Realistic (basket) case: Group baskets per geometry volume

FULL SCALE DEMONSTRATOR

- Current prototype able to run an exercise at the scale of an LHC experiment (CMS)
 - Simplified (tabulated) physics but full geometry, RK propagator in field
 - Very preliminary results needing validation, but hinting already to performance improvements of factors in scalar mode



OTHER ACHIEVEMENTS

- Revise GeantV system design (all+A.Ribon, M.Novak)
 - Major design work on new classes and structures completed
- Development of ROOT-independent physics classes (F.Carminati)
- Porting and benchmarking of code to Xeon Phi (S.Vallecorsa)
- Porting of code to CUDA (S.Vallecorsa, FNAL)
- Presentation at CHEP and Supercomputing 2015 (A.Gheata)
- ▶ Build & test infrastructure on Jenkins (G.Folger, O.Shadura, P.Mendez Lorenzo)
 - All platforms including GPUs and coprocessors, support of Doxygen information publishing, nightly Coverity checks, gitlab integration

OTHER ACHIEVEMENTS

- Coding convention tools (O.Shadura)
 - ▶ Integration in jenkins of latest rules from Eclair for VecGeom & GeantV
 - ▶ Clang-format code beautification & analysis: hooks, test & documentation
- Performance tuning and monitoring (A.Gheata, O.Shadura PhD)
 - Genetic optimisation of parameters with NSGA-II algorithm with crowding distance and non-domination sorting operators
 - Ongoing work on parallel processing and concurrency of framework
 - ▶ Testing of set of DTLZx multi-objective functional evaluation with performance counters
- MPI version of the GeantV running several parallel multithreaded kernels (M.Bandieramonte)

POW 16

GEANT4 PHYSICS

- Continuous tasks (no deadline)
 - Coordination of Hadronic Working Group (A.Ribon)
 - Coordination of Electromagnetic Physics (V.Ivantchenko)
 - Maintenance of physics lists (G.Folger coord, A.Ribon)
 - Maintenance of FTF code (A.Ribon)
 - Hadronic showers testing (A.Ribon)
 - Grid testing, reproducibility (W.Pokorski, A.Ribon)
 - Maintenance of Binary Cascade (G.Folger)
 - Representation of Geant4 in the CERN Medical Application Committee (J.Apostolakis)

CERN EXPERIMENT SUPPORT

- Ongoing tasks
- ALICE (A.Ribon)
- ATLAS (J.Apostolakis)
- CALICE (A.Ribon)
- CMS (V.Ivantchenko, G.Cosmo)
- FCC (A.Ribon)
- LHCb (W.Pokorski)

GEANT4 ELECTROMAGNETIC PHYSICS

- ▶ Investigate the Mott correction for the Goudsmit-Saunderson MS (M.Novak, V.Invantchenko)
 - ▶ 3Q16
- Development of single scattering model for e-/e+ based on Dirac PWA (best possible in 1keV-100MeV kin)
 (M.Novak, V.Invantchenko)
 - ▶ 1H16
- Doc & publication (M.Novak, V.Invantchenko)
 - ▶ 2H16
- ▶ Improved calorimeter response tuning fluctuation and MS (V.Ivantchenko, M.Novak, L.Urban)
 - ▶ 2H16
- Migration of Fermi BU, General evaporation model to the common nuclear level database (V.Ivantchenko)
 - ▶ 1H16
- Specific experiment issues (V.Ivantchenko, J.Apostolakis, W.Pokorski, A.Ribon, A.Bagulya, V.Grichine)
 - > ATLAS shower shape and tilecal, CMS testbeam review, ALICE move to Geant4 PhysList, TRD

GEANT4 HADRONIC PHYSICS

- ▶ Tuning of parameters of de-excitation/pre-compound modes (V.Ivantchenko and J.M.Quesada)
 - ▶ 2H16
- Improvement of the charge exchange model (V.Ivantchenko)
 - ▶ 1H15
- Continue the maintenance of FTS & QGS codes (A.Ribon with V.Uzhinskii)
 - ▶ 1H16
- Continue the maintenance Binary Cascade (G.Folger)
 - Ongoing
- ▶ High energy models for LHC and FCC applications (V.Ivantchenko, A.Ribon and A.Bagulya)
 - ▶ 2H16

GEANT4 GEOMETRY

- Review and improvement of safety calculation in MT (J.Apostolakis, G.Cosmo)
 - ▶ 1H16
- Parallel Navigation performance / robustness (J.Apostolakis, G.Cosmo)
 - ▶ 3Q16
- ▶ Implement use of C++11/14 constructs in the Geant4 geometry modeler (G.Cosmo)
 - ▶ 1H16
- ▶ Complete the replacement of Usolid shapes with VecGeom ones and test them with Geant4 and ALICE VMC (G.Cosmo, T.Nikitina, M.Gheta, R.Seghal)
 - ▶ 2H16 (also a GeantV item)
- Coordination geometry in Geant4 (G.Cosmo)
 - Ongoing

ONGOING PROJECTS

- Grid tests of Geant4 (D.Konstantinov, V.Pokosrski, A.Ribon)
- Support for GDML, ROOT I/O (W.Pokorski, G.Cosmo)
- Geant4&V and VecGeom POW monitoring (G.Cosmo)
- Nightly & continuous testing (G.Cosmo, G.Folger)
- Release coordination, building & installing (G.Cosmo, G.Folger)
- Coordination of the Geant4 C++11 task-force (G.Cosmo)
- Web master (G.Cosmo, G.Folger)
 - Migration to Drupal 2H16
- Coordination of GENSER (W.Pokorski, D.Konstantinov)
- Coordination of HepMC3 development (W.Pokorski, D.Konstantinov)
 - ▶ First production release 1H16
- Validation DB development (W.Pokorski, A.Ribon, FNAL, D.Konstantinov)

GEANTV OVERVIEW

- ▶ The objective of GeantV for 2016 are
 - ▶ A vector version of the most important EM processes
 - ▶ Tabulated physics for hadronic
 - ▶ A vector version of magnetic field stepper
 - ▶ Implement full vector navigator for geometry
 - ▶ Port & optimise the code to Intel Xeon Phi KNL
 - ▶ Complete porting & optimise the code on NVIDIA GPUs
 - Integrate hits parallel I/O
 - Develop kinematic and truth I/O
 - Run with at least 2 large detectors (CMS and ALICE, LHCb could be added, ATLAS has to be evaluated)
 - ▶ Continuously monitor performance with respect to Geant4

GEANTV PHYSICS

- Integration & vectorization of the new Goudsmit-Saunderson multiple scattering model (M.Novak, F.Hariri)
 - ▶ 1H16
- Integration of physics utilities (e.g. stepper, physics list, etc.) (J.Apostolakis, M.Novak, A. Ribon, F.Hariri)
 - ▶ 1H16
- Integration & validation of important EM processes (J.Apostolakis, M.Novak, A. Ribon, F.Hariri, FNAL)
 - ▶ 3Q16
- Implement realistic physics cuts and validate physics performance
 - ▶ 1Q16

GEANTY GEOMETRY & TRACKING

- Integration of the full vector navigator with physics and geometry (A.Gheata)
 - ▶ 1Q16
- Vectorization of magnetic field stepper (Ananya, J.Apostolakis, A.Gheata, FNAL)
 - **▶ 1Q16**
- MonteCarlo truth and kinematic structure, with persistency (W.Pokorski, A.Gheata)
 - ▶ 1H16
- Development of I/O (hits & MC truth) for the MPI version (M.Bandiermonte, A.Gheata)
 - ▶ 1H16
- Further development of the TreeJS interface (I.Goulas)
 - Ongoing
- Developments of VecGeom & TGeo interface for VMC (AIDA-2020/WP3) (M.Gheata, G.Cosmo, FNAL)
 - ▶ 2H16

GEANTY INFRASTRUCTURE

- Demonstrate gains on accelerators with vector navigation & automatic selection of voxelisation (A.Gheata, S.Vallecorsa, FNAL)
 - ▶ 1Q16
- Documentation (J.Apostolakis, M.Novak, A. Ribon, F.Hariri)
 - ▶ 2H16
- Complete porting of tabulated physics on GPU and Xeon Phi KNC (S.Vallecorsa, FNAL)
 - **1016**
- Detailed performance evaluation on Intel Xeon Phi (KNC) (S.Vallecorsa)
 - ▶ 1Q16

GEANTV INFRASTRUCTURE

- Port GeantV to the Intel Xeon Phi KNL (or the emulator) and evaluate performance (S.Vallecorsa, A.Gheata)
 - ▶ 1H16
- Performance analysis and optimisation on Xeon Phi KNL (S.Vallecorsa)
 - ▶ 3Q16
- Develop a fast simulation infrastructure and implement simple fast simulation algorithms from Geant4 geared toward FCC (A.Ribon)
 - ▶ 1H16
- Definition of libraries: separation between utilities, API, scheduling, I/O libraries (all, FNAL)
 - ▶ 1H16

PERFORMANCE OPTIMISATION

- Performance monitoring and tuning on all architectures (FNAL, O.Shadura, S.Vallecorsa, A.Gheata)
 - ▶ 2H16
- Genetic algorithm optimisation (O.Shadura)
 - Implementation & test of genetic operators (NSGA-III, MOAE/D-PBI, MOAE/DE)
 - Integration of MVA to reduce dimensionality
 - Production runs and evaluation of results and recommendations

CONCLUSIONS 37

CONCLUSIONS

Just run out of steam...