A high throughput ADC system for the PROMETEO test-bench of the ATLAS Tile Calorimeter

Matthew Spoor

matthew.spoor@cern.ch

University of the Witwatersrand, SA

HEPP, Febuary 2016

M. Spoor (WITS)

ADC Trigger Board

HEPP, 10/02/2016 1 / 18

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- ATLAS
- Phase II Upgrade
- Hybrid Demonstrator
- MobiDick test-bench
- PROMETEO test-bench
- ADC Trigger Board
 - Board design
 - Firmware
 - FPGA Architecture
 - Testing & Simulations
 - Simulation
 - ADC Setup
 - Analog testing
 - Status of the ADC board

4 3 > 4 3

< 47 ▶

ATLAS

ATLAS Tile Calorimeter

- General purpose particle detector (Proton-Proton)
- 40 MHz collision rate
- Millions of readout channels
- Petabytes of data generated a second

Phase II Upgrade - TileCal readout electronics

Present front-end electronics.

Hybrid Demonstrator

- Validation of the new readout architecture, trigger system interfaces.
- Divides each TileCal module into 4 separate mini-drawers.
- Mini-drawer: Mainboard, Daughterboard, 12 PMTs, HV card and Adder board
- Compatible with old architecture.

MobiDICK test-bench

Embedded system block diagram

Design of PROMETEO.

- Main board: Xilinx ML507 evaluation board
- Recording data after L1 trigger @ 100 kHz
- Using slow canbus to control 3in1 cards and HV in each PMT
- Server running on PPC, connects to client via Ethernets

M. Spoor (WITS)

ADC Trigger Board

HEPP, 10/02/2016 6 / 18

イロト イポト イヨト イヨト

PROMETEO test-bench

Design of PROMETEO.

- Main board: Xilinx VC707 and QSFP+ to transfer data through FMC connectors at 40 MHz
- Bandwidth upgrades from 640 Mbps/s to 40 Gbps
- Full compatibility to sROD in the TileCal, sharing the main board
- Removed Canbus dongles
- Using IP bus protocol, firmware manipulated directly by client via ethernet

PROMETEO test-bench: Requirements

• Conceptual design requirements for PROMETEO:

- read-out data from 12 PMTs at the LHC bunch crossing frequency
- assess the quality of data in real-time
- be self-contained and portable
- be low-cost and scalable for network usage

• PROMETEO has been designed to perform the following tests:

- Charge Injection System (CIS) Noise/Linearity
- Integrator Noise/Linearity
- Pedestal Noise/Linearity
- High Voltage (HV) Stability/Linearity

ADC FMC Trigger Board

Aim: Develop, test and validate a new ADC board for PROMETEO

- Redesign ADC PCB: smaller and VC707 compatible
- Troubleshoot and fix board prototypes
- Complete redesign of firmware
- Perform validation testing

ADC v1 Prototype.

ADC connected to the VC707 through FMC.

ADC Trigger Board

ADC FMC Trigger Board

- Part of the PROMETEO:
 - Test the adder cards in the hybrid demonstrator drawer
 - Digitizes analog signals coming from the Hadron and Muon trigger cables
- Hardware specifications
 - Based on the MobiDICK ADC board design
 - FPGA Mezzanine Card (FMC) format
 - 2 x Texas Instruments ADS5271
 - 8 ADC channels per ADC
 - Up to 50 MSPS, 12 bit
 - DB50 connector
 - Status: V1 produced and tested + V2 Produced, final testing

ADC Trigger Board V2

Firmware

- Firmware Requirements:
 - Deserialisation of 16 ADC channels using regular IO pins
 - 480 MSPS (12 bits x 40 MHz)
 - Total of 7.68 Gbps
 - Configuration of the ADC (I2C interface)
 - Storage in FIFO memories or IPBus registers
 - Status: Under development
- ADC readout cell
 - Two ISERDESE2 blocks: Single Data Rate, 6 bits
 - Latching positive and negative data ports independently

ADC readout cell

Complete Architecture

- Modules that are needed:
 - 16 x ADC readout cell
 - configuration unit
 - I2C interface
 - Send 40 MHz Clock (From ADC)
 - ADC and FPGA firmware running in the same clock domain
 - FIFO memories or IPBUS memories
 - State machines
 - Word and Bit Alignment
 - Control and Data Flow

FPGA firmware layout

Simulation

Alignment Simulation

Data alignment simulation

M. Spoor (WITS)

ADC Trigger Board

HEPP. 10/02/2016 13 / 18

э

イロン イ団 とく ヨン ・ ヨン …

ADC Setup

Bus/Signal	x	0	84	08	0 	120	160	200	240	280	320	360	400	440	480	520	560	600	640	680	720
- STATE	03	03	X	04 X	05				06) (18 X		09		XXX	0C	Х	10
∽ ch16	000	000	00	o X	(AD4	(A95)	(E85)	F81)			FC0			X			555			000)))))
∽ ch15	000	000	00	0 X	AD4	(A95)	(E85)	F81)			FC0			X			555) 🗶 o	10))++
∽ ch14	002	002):())		AD4	(A95)	(E85)	F81)			FC0			Х			555				()): · ·
•- ch13	FFF	FFF	X	X FFF X	(AD4	(A95)	(E85)	F81)			FC0			X			655) X ff	FXXX
⊶ ch12	000	000	00	o X	(AD4	(A95)	(<u>E85</u>)	F81)			FC0			X			555			<u>)</u> 000	- X-18
⊶ ch11	000	000	00	o X	(AD4	(A95)	(<u>E85</u>)(F81)			FC0			Х			555			<u>) 000</u>)) (j)
•- ch10	002	002		XXX	AD4	(A95)	(<u>E85</u>)	F81)			FC0			X			555				X0
•- ch9	000	000	00	o X	(D0B	(F42)	(FC	:0			X			555			(000	
°- ch8	180	180	1000	XXXX	(DOB	(F42)				FC	0			X			555)XXXXX	(b) + (c)
•- ch7	000	000	00	o X	(D0B	(F42)				FC	0			Х			555			X 000) ()
•- ch6	000	000	00	o X	(DOB	(F42)				FC	0			X			555) <u> </u>	-)+()
°- ch5	280	280	XXXX	- (M) (M) (M)	DOB	(F42)				FC	0			X			555			XXXX	
∽ ch4	000	000	X X 000	X ooo X	(D0B	(F42)	(FC	:0			X			555			XX	
•- ch3	3D0	3D0			(DOB	(F42)				FC	0			X			555			XXX	0.0
∽ ch2	290	290	XXXX		(D0B	(F42)	(FC	:0			Х			555				¥0 + 0.
•- ch1	200	200	XXXX		(D0B	(F42)				FC	0			X			555) X	8 9 - 61
RESET_ADC	1	1																			
- CS_ADC	1	1											1								
- SDATA_ADC	0	0		Π																	
SCLK_ADC	1	1	LUUU	w										w				m	nnn		

ADC setup and data readout

2

イロト イヨト イヨト イヨト

Analog testing

200KHz 0.9-1.9V, Analog input

э

イロト イヨト イヨト イヨト

Status of the ADC board

PCB

- x2 V2.0 ADC boards manufactured in SA last year
- Has undergone testing at WITS and CERN
- Functional!
- To be installed in a PROMETEO system later this month
- x6 boards to be manufactured (x4 Prometeo Systems, x2 backup)

Firmware

- Majority of firmware completed
- Still needs IPbus module
- Additional functionality to be added (Custom ADC configurations)
- Needs to be integrated into SROD firmware

Word Alignment state machine

Bit Alignment state machine

 No guarantee that positive data will be registered with rising clock edge and negative data the falling clock edge

