

Non-Abelian Correction to the Poisson Approximation for In Medium Multi-gluon Bremsstrahlung

Andriniaina N. Rasoanaivo

Supervised by Dr W.A. Horowitz

University of Cape Town, Cape Town

High Energy Particle Physics workshop, Johannesburg, February 2016

Outline

- Introduction
- Motivation and Goal
- Mathematical tools
- Computation of J⁽ⁿ⁾_{QCD}
- Conclusion

Early Universe

- Shortly after the big bang, the universe was filled by mixture of quarks and gluons,Quark-Gluon-Plasma.
- QGP is a phase of QCD where quarks and gluons are deconfined.
- The Universe was in the QGP state for a very short time.

Heavy Ion Collisions

- Experiments at RHIC and at LHC,
- Recreate conditions similar to those at early universe,
- Fluid behaviour of QGP,
- Evolution of the QGP.
- Inclusive jet production events.

Heavy Ion Collisions

- Experiments at RHIC and at LHC,
- Recreate conditions similar to those at early universe,
- Fluid behaviour of QGP,
- Evolution of the QGP.
- Inclusive jet production events.

Heavy Ion Collisions

- Experiments at RHIC and at LHC,
- Recreate conditions similar to those at early universe,
- Fluid behaviour of QGP,
- Evolution of the QGP.
- Inclusive jet production events.

Radiative Correction

■ The high p_T quark propagates in time with the medium,

Radiative Correction

- The high p_T quark propagates in time with the medium,
- Gluon exchange with the medium which induce excitation,

Radiative Correction

- The high p_T quark propagates in time with the medium,
- Gluon exchange with the medium which induce excitation,
- Gluon radiation: origin of Radiative Energy Loss.

Radiative Correction

- The high p_T quark propagates in time with the medium,
- Gluon exchange with the medium which induce excitation,
- Gluon radiation: origin of Radiative Energy Loss.

Radiative correction can be computed theoretically in the amplitude level

$$\mathcal{M}_{ng} = \mathcal{M}_0 J^{(n)}(k_1, \ldots, k_n).$$

The resummation of those correction in the cross section level gives us the distribution of radiative gluon emitted.

Introduction Motivation and Goal Mathematical Tools and Techniques Computation

How do we manage to compute those $J^{(n)}$ for gluon radiations?

6

Andriniaina Narindra Rasoanaivo --- Non-Abelian Correction to the Poisson Approximation for In Medium Multi-gluon Bremsstrahlung

Andriniaina Narindra Rasoanaivo — Non-Abelian Correction to the Poisson Approximation for In Medium Multi-gluon Bremsstrahlung

Andriniaina Narindra Rasoanaivo — Non-Abelian Correction to the Poisson Approximation for In Medium Multi-gluon Bremsstrahlung

Andriniaina Narindra Rasoanaivo — Non-Abelian Correction to the Poisson Approximation for In Medium Multi-gluon Bremsstrahlung

Maximal Helicity Violating (MHV)

Spinor helicity formalism

$$oldsymbol{
ho}_{\mu} o oldsymbol{
ho}_{a\dot{a}} = oldsymbol{
ho}_{\mu} \sigma^{\mu}_{a\dot{a}} = \lambda_a \widetilde{\lambda}_{\dot{a}}$$

Invariant products

$$\langle p,q \rangle = \epsilon_{ab} \lambda_p^a \lambda_q^b$$
 and $[p,q] = \epsilon_{\dot{a}\dot{b}} \tilde{\lambda}_p^{\dot{a}} \tilde{\lambda}_q^{\dot{b}}$

Amplitudes with helicity

$$\mathcal{A}_{n} = \begin{pmatrix} \lambda_{n} \\ \lambda_{n} \\$$

BCFW recursion to compute the higher number of negative helicity.

Bremsstrahlung Photon (QED)

Diagrammatic representation of amplitudes for *n* photon emissions

All permutation of photon \implies Independent photon emissions. Soft-collinear radiation correction *J* for *n* bremsstrahlung is given by

$$J^{(n)}(k_1, k_2, \ldots, k_n) = \prod_{i=1}^n J^{(1)}(k_i)$$

Where in the MHV techniques

$$J^{(1)}(k) = rac{\langle m{p},m{p}'
angle}{\langlem{p},m{k}
angle\,\langlem{k},m{p}'
angle}$$

Bremsstrahlung Photon (QED)

Diagrammatic representation of amplitudes for *n* photon emissions

All permutation of photon \implies Independent photon emissions. Soft-collinear radiation correction *J* for *n* bremsstrahlung is given by

$$J^{(n)}(k_1, k_2, \ldots, k_n) = \prod_{i=1}^n J^{(1)}(k_i)$$

Where in the MHV techniques

$$J^{(1)}(k) = \frac{\langle p, p' \rangle}{\langle p, k \rangle \langle k, p' \rangle} \sim \left(\frac{p.\mathcal{E}(k)}{p.k} - \frac{p'.\mathcal{E}(k)}{p'.k} \right)$$

QED limit of QCD

QCD scattering amplitude

$$\mathcal{M}_{ng} = \sum_{\sigma \in S(n)} \left(\mathcal{T}_{a_{\sigma_1}} \cdots \mathcal{T}_{a_{\sigma_n}} \right)_{a_p a_{p'}} \mathcal{A}(p, p', k_{\sigma_1}, \dots, k_{\sigma_n})$$

2 Going from *QCD* to *QED*:

• $A_{\mu} = A_{\mu}^{a} T_{a}$ where T_{a} are the generator of the su(N) algebra

$$[T_a, T_b] = i f_{ab}^c T_c$$
 and $tr(T_a T_b) = \frac{1}{2} \delta_{ab}$

■ $SU(N) \rightarrow U(N)$ by taking

$$T_a \sim \mathbb{I} \Rightarrow [T_a, T_b] = 0$$

Reduction from U(N) to U(1) by

 $N \rightarrow 1$

QED scattering amplitudes

$$\mathcal{M}_{n\gamma} = \sum_{\sigma \in \mathcal{S}(n)} \mathcal{A}(p, p', k_{\sigma_1}, \dots, k_{\sigma_n})$$

Symmetric Group *S*(*n*)

- Given *n* numbers of bremsstrahlung gluon emitted, we consider S(n) that permutes the gluons legs.
- Introduce P_{α} to be the projectors into the different Young tableaux (irreducible representation) associate to S(n) such that

$$\mathbf{a} = \{ \mathbf{m} \cdots \mathbf{n}, \mathbf{m}^{\mathbf{n}}, \dots \}$$
$$\sum_{\alpha} P_{\alpha} = 1$$
$$\mathbf{P}_{\alpha} P_{\beta} = \delta_{\alpha\beta} P_{\alpha}$$

Decomposition in the irreducible amplitudes

$$\mathcal{M}_{ng} = \sum_{\alpha} \sum_{\sigma \in S(n)} \mathcal{P}_{\alpha} \left(\mathcal{T}_{a_{\sigma_{1}}} \cdots \mathcal{T}_{a_{\sigma_{n}}} \right) \mathcal{P}_{\alpha} \mathcal{A}(k_{\sigma_{1}}, \dots, k_{\sigma_{n}})$$

QED part of \mathcal{M}_{ng} is the symmetrization of $A(k_1, \ldots, k_n)$

$$\mathcal{M}_{3\gamma} = \mathcal{P}_{\Box\Box\Box} \mathcal{A}(k_1, k_2, k_3)$$

Procedures

Starting with the color kinematic scattering amplitude

$$\mathcal{M}_{ng} = \sum_{\sigma \in S(n)} C_{a_{\sigma_1} \cdots a_{\sigma_n}} \mathcal{A}(k_{\sigma_1}, \dots, k_{\sigma_n})$$

2 Expand in the different Young symmetrizer labelled by α

$$\mathcal{M}_{ng} = \mathcal{C}_{(a_1 \cdots a_n)} \mathcal{M}_{n\gamma} + \sum_{\sigma \in S(n)} \sum_{\alpha} \mathcal{C}^{\alpha}_{a_{\sigma_1} \cdots a_{\sigma_n}} \mathcal{A}^{\alpha}(\sigma_1, \dots, \sigma_n)$$

Factorize the parent amplitudes

$$\mathcal{M}_{ng} = \mathcal{M}_0 J^{(n)}(k_1, \ldots, k_n)$$

Eikonal function $J^{(n)}$

$$J_{QCD}^{(n)} = C_{(a_1 \cdots a_n)} J_{QED}^{(n)} + J_{\text{non-abelian}}^{(n)}$$

One Bremsstrahlung Gluon

And the state of t

One gluon

.

$$\mathcal{J}_{QCD}^{(1)} = \frac{1}{2} \{ T_{a_q}, T_{a_1} \} \underbrace{\frac{\langle p, p' \rangle}{\langle p, k_1 \rangle \langle k_1, p' \rangle}}_{J_{QED}^{(1)}} + \underbrace{\frac{1}{2} [T_{a_q}, T_{a_1}] \frac{\langle q, p \rangle}{\langle q, k_1 \rangle \langle k_1, p \rangle}}_{J_{non-abelian}^{(1)}} \\ \stackrel{\text{or}}{=} \frac{1}{2} \{ T_{a_q}, T_{a_1} \} \frac{\langle p, p' \rangle}{\langle p, k_1 \rangle \langle k_1, p' \rangle} + \frac{1}{2} [T_{a_q}, T_{a_1}] \frac{\langle q, p' \rangle}{\langle q, k_1 \rangle \langle k_1, p' \rangle}$$

the gluon may be collinear along p or p'

Conclusion

Summary

- The distribution of bremsstrahlung contain the information on the Energy Loss
- Decomposition in the irreducible representation of S(n) is a framework to do non-abelian corrections
- MHV techniques makes the result in a very compact form

In Progress

- Computing $J_{QCD}^{(n)}$ in the color flip
- Looking for a pattern for $J_{QCD}^{(n)}$ in order to get a resummation
- Once we obtain the distribution we wanted competing $\langle E \rangle_{\rm radiated}$ and compare to the energy loss

Introduction Motivation and Goal Mathematical Tools and Techniques Computation

Thank You!

Andriniaina Narindra Rasoanaivo --- Non-Abelian Correction to the Poisson Approximation for In Medium Multi-gluon Bremsstrahlung

16