

1/21

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop

Neutral meson and direct photon analysis with ALICE

Andile Whitehead for ALICE Collaboration

University of Cape Town, Cape Town

Workshop on High Energy Particle Physics Johannesburg, 08-10 February 2016

Introduction

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop Primary objective of ALICE is to study heavy collisions at the LHC.

- Colliding nuclei create deconfined state of quarks and gluons
 - \rightarrow QGP expands and cools
 - ightarrow hadron gas forms at chemical freeze-out
 - \rightarrow hadrons free stream to detector at kinetic freeze-out.
- Photons are emitted at all stages of evolution of medium
- Created photons only interact electromagnetically with strongly coupled medium ⇒ information pertaining to medium at time of creation remains relatively undistorted
- Neutral meson measurement crucial for inferring photons directly emitted from medium

Introduction

Thermal photon

 $\label{eq:Direct photons} \mbox{Direct photons} = \mbox{photons that do not emanate from particle decays}$

- Thermal photons: Arising from thermal scattering in QGP and hadron gas, dominate at low p_T
- Photons from early hard scattering: Include prompt photons, dominate at high p_T
- Direct photon measurement at low p_T correlated to average medium temperature in AA collisions

Prompt photon

<ロ> (四) (四) (注) (日) (三)

- Meson and direct photon production in pp collisions provides test for perturbative QCD (pQCD)
- Meson measurements in pp and p-Pb act as a reference to measurements in AA collisions
- π^0 nuclear modification factor, R_{AA} , allows for testing of parton energy loss in QGP
- Neutral meson production (π^0, η) spectrum is necessary for direct photon search $\Rightarrow \pi^0$ and η mesons account for 80% and 18% respectively of decay photon spectrum

ALICE detector

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop Neutral mesons are measured either by the PHOS and EMCal calorimeters or the Photon Conversion Method (PCM).

۲ (cm)

300

200

-400 -200 0 200 400

PHOS/EMCal:

- Direct measurement of photon pairs: $\pi^0 \rightarrow \gamma + \gamma$
- Intermediate to high p_T range

PCM:

 Measurement of converted electron positron pairs with PCM:

 $\pi^0
ightarrow \gamma (
ightarrow e^- e^+) + \gamma (
ightarrow e^- e^+)$

- Low (as low as 0.3 GeV/c) to intermediate p_T range
- Low conversion probability ~8% but large acceptance

P

300

PCM reconstruction

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop

- V⁰ reconstruction, combine two oppositely charged secondary tracks
- Impact parameter size less than given value ⇒ track rejected
- $\blacksquare \ \mathsf{DCA} \ \mathsf{above} \ 1 \ \mathsf{cm} \Rightarrow \mathsf{track} \ \mathsf{pair} \\ \mathsf{rejected} \\ \label{eq:delta_constraint}$
- V⁰'s outside of fiducial zone rejected
- Momentum of track pair extrapolated to DCA $\Rightarrow V^0$ momentum calculated
- Check if V⁰ points to primary vertex

Distribution of conversion points in the azimuthal plane

Invariant Mass

Andile Whitehead for ALICE Collaboration

pp. (s=7 TeV

EMCAL 5.0<p_<7.0 GeV/c

EMCal $n \rightarrow \gamma \gamma$

0-10%

Pb-Pb, vs., = 2.76 TeV

12 < p_7 < 14 GeV/c2

0.2

0.14

ALICE 07.08.2012

ALICE performance

19.01.2016

M... (GeV/c²)

PHOS

ALTCF

- : signal including +background
- + : signal with background removed
- : fit to signal with background removed

・ロト ・回ト ・ミト ・ミト

- Reconstructed π^0 peak width (a) and position (b) versus p_T in pp collisions at $\sqrt{s} = 7$ TeV in PHOS and PCM compared to Monte Carlo simulations
- Horizontal line in (b) represents nominal π⁰ mass
- Both measurements particularly good at intermediate p_T
- Extremely large coverage when methods are combined

π^0 spectra in pp

Andile Whitehead for ALICE Collaboration iThemba

10/21

- Differential invariant cross-section of π^0 production in pp collisions at $\sqrt{s} = 0.9$ TeV, 2.76 TeV and $\sqrt{s} = 7$ TeV.
- Tsallis fit over full p_T range.
 Power law dependence at high p_T
- Horizontal line through unity indicates fit
- With increasing \sqrt{s} , NLO pQCD increasingly overpredicts measurements at high p_T

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

π^0 spectra in Pb-Pb

Andile Whitehead for ALICE Collaboration

Nuclear modification factor

Andile Whitehead for ALICE Collaboration

EPJC 74 (2014) 3108

 $\blacksquare R_{AA} = \frac{\left(1/N_{AA}^{evt}\right) d^2 N_{AA}^{\pi^0}/dp_T dy}{\langle T_{AB} \rangle \times d^2 \sigma^{\pi_{pp}^0}/dp_T dy}$

• $\pi^0 R_{AA}$ for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV for three centrality

classes ranging from most central to peripheral.

- Boxes around unity represent uncertainty in average nuclear overlap function $\langle T_{\rm AB} \rangle = \sigma_{pp}^{\rm inel} / N_{\rm coll}$
- More central collisions exhibit greater suppression \rightarrow larger medium created in more central collisions
- Strongest suppression at $p_T \gtrsim 3 \text{ GeV}/c$

Nuclear modification factor

Andile Whitehead for ALICE Collaboration

- ALICE π⁰ R_{AA} measurements in most central collisions compared to those from PHENIX and SPS results
- R_{AA} decreases with increase in $\sqrt{s_{NN}}$
- Higher energy densities created in collisions with larger √s_{NN} ⇒ larger medium created
- *R*_{AA} maximum shifts towards lower *p*_T with increasing √*s*_{NN}

Direct Photons

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop

Extraction of direct spectrum involves removal of large decay background

• $R_{\gamma} > 1 \Rightarrow$ presence of direct photons

Distributions of fraction of specific meson decay spectrum over total decay spectrum for several mesons

Double Ratio

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop

- ~ 30% excess in R_{γ} at large ALICE p_{T} for all centrality classes
- pQCD predictions underpredict R_{γ} at low p_T (\lesssim 4 GeV/c) in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
- Measurements at $\sqrt{s} = 7$ TeV in agreement with NLO pQCD

・ロト ・回ト ・ヨト ・ヨト

Direct Photon Spectrum

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop

- Direct photon spectrum for Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV for three centrality classes
- Measurements performed over p_T range 0.9 < p_T < 14 GeV/c</p>
- NLO pQCD and JETPHOX predicitions are in good agreement with data for $p_T > 5 \text{ GeV}/c$
- Once again, excess at low p_T above pQCD predictions is observed
- Excess in centrality class 0-20% at low p_T of ~10-15% with 2σ significance

Direct Photon Spectrum

Andile Whitehead for ALICE Collaboration

iThemba HEP Workshop Several models used in spectral fit, with all assuming formation of QGP and pQCD photons at high p_T but differing treatment of space-time evolution:

- Paquet et al.: 2+1 viscous hydro with IP-GLASMA initial conditions
- Linnyk et al.: off-shell transport, microscopic description of evolution
- v. Hees et al.: ideal hydro
- Chatterjee et al.: 2+1 hydro
- Exponential $A \exp(-p_T / T_{\text{eff}})$, fitted to low p_T range of spectrum.
- Inverse slope parameter $T_{eff} = 297 \pm 12^{stat} \pm 41^{syst}$ MeV

Summary

Andile Whitehead for ALICE Collaboration

- In ALICE, PHOS, EMCal and PCM are used to measure neutral mesons and photons
 - Combined methods cover a large p_T range
 - \blacksquare In pp collisions, cross-sections measured at several $\sqrt{s},$ allow for the testing of pQCD
 - Large suppression of π^0 's in Pb-Pb at $\sqrt{s_{\rm NN}} = 2.76$ TeV in most central collisions is observed
 - Direct photon spectrum in both pp and Pb-Pb measured:
 - pp, R_γ shows good agreement with pQCD predictions
 - Excess in R_{γ} above pQCD predictions at low p_T in Pb-Pb is observed
 - Inverse slope parameter, T_{eff} , extracted from low p_T region of direct photon spectrum.
 - Outlook: Perform analysis of Pb-Pb data at $\sqrt{s_{NN}} = 5.02$ TeV

iThemba HEP Workshop

Additional Slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ALICE

π^0 and η spectra over extended p_T

Andile Whitehead for ALICE

Collabora-

tion

iThemba HEP Workshop

