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Black hole absorption

Field theory allows for particle scattering off a black hole.

This scattering implies “Grey body”, not pure “Black body”,
behaviour.

Pioneered by Unruh in 1976.

Unruh ideas describe Hawking radiation.
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Rarita-Schwinger equation

The relativistic field equation of spin-3/2 particles.

Rarita-Schwinger equation

γµνα∇νΨα = 0

where γµνα = γµγνγα − γµgνα + γνgνα − γαgµν .

Gravitino is predicted to have a spin of 3/2.

Lightest supersymmetic particle.
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Schwarzschild metric

N dimensional Schwarzschild metric

ds2 = −f (r)dt2 +
1

f (r)
dr2 + r2dΩ2

N−2,

with f (r) = 1−
(
2M
r

)N−3
.

N dimensional spherical metric

dΩ2
N = dθ2 + sin2(θ)dΩ2

N−1,

with dΩ2
2 = dθ2 + sin2(θ)dφ2.
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Radial equation

Radial equation

− d2

dr2∗
φ̄1 + V1φ̄1 = ω2φ̄1; − d2

dr2∗
φ̄2 + V2φ̄2 = ω2φ̄2,

where d
dr∗

= f (r) d
dr

Gerhard Harmsen (Wits) Absorption probabilities 9th February 2016 6 / 18



Potential function

N dimensional potential function

V1,2 = ±f dW
dr

+ W 2,

with,

W =

(
j + N−3

2

)√
f

r


(

2
N−2

)2 (
j − 1

2

) (
j + 2N−5

2

)
− N−4

N−2

(
2M
r

)N−3(
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N−2
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+
(
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Unruh method

Consider three regions:

Near Region: Central Region: Far Region:
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Figure: Potential for the 4 dimensional Schwarzschild black hole
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Unruh method

The absorption probability is given as,

Unruh absorption probability

|Aj(ω)|2 = 4πC 2ω2j+1
(
1 + πC 2ω2j+1

)−2 ≈ 4πC 2ω2j+1,

where,

C =
1

22j+1Γ(j + 1)

j + 3
2

j − 1
2

,

where Γ is the gamma function and ω < 1.
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Potential near black hole
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Figure: Potential function for spin-3/2 particles in 4 and higher dimensional
Schwarzschild backgrounds with angular momentum j=3/2.
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Potential near black hole

j=3/2

j=5/2

j=7/2

j=9/2

j=11/2

j=13/2

0 2 4 6 8 10
0

1

2

3

4

5

6

7

r

VHrL

Figure: Absorption probability for spin-3/2 particles in 4 dimensional
Schwarzschild background with angular momentum j=3/2 to 13/2.
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WKB method

WKB absorption probability

|Aj(ω)|2 =
1

1 + e2S(ω)
,

with,

S(ω) = πk1/2
[

1

2
z20 +

(
15

64
b23 −

3

16
b4

)
z40

]
+ πk1/2

[
1155

2048
b43 −

315

256
b23b4 +

35

128
b24 +

35

64
b3b5 −

5

32
b6

]
z60

+ πk−1/2

[
3

16
b4 −

7

64
b23

]
− πk−1/2

[
1365

2048
b43 −

525

256
b23b4 +

85

128
b24 +

95

64
b3b5 −

25

32
b6

]
z20 ,
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Results

j=3/2 j=5/2 j=7/2 j=9/2 j=11/2 j=13/2
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Figure: Absorption probability for spin-3/2 particles in 4 dimensional
Schwarzschild backgrounds for angular momentum j=3/2 to 13/2.
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Results

j=3/2 j=5/2 j=7/2 j=9/2 j=11/2 j=13/2
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Figure: Absorption probability for spin-3/2 particles in 5 dimensional
Schwarzschild backgrounds with angular momentum j=3/2 to 13/2.
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Results

N=4 N=5 N=6 N=7 N=8 N=9
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Figure: Absorption probabilities for spin-3/2 particles with an angular momentum
of j=3/2 in 4 and higher dimensional Schwarzschild backgrounds.
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Results
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Figure: Absorption probabilities for spin-3/2 particles with an angular momentum
of j=5/2 in 4 and higher dimensional Schwarzschild backgrounds.
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Concluding remarks

An increase in quantum number j results in an increase in the
required particle energy for absorption.

Increase in space time dimensions results in an increase in the
required particle energy for absorption.

Higher dimensional black holes exhibit a slower changes from total
reflection to total absorption
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