Studying the effects of radiation damage in plastic scintillators using EPR for the replacement of the MBTS plastics in the ATLAS detector

Chad Pelwan

H. Jivan, D. Joubert, J. Keartland, S. Liao, M. Madhuku, B. Mellado, G. Peters, K. Sekonya, E. Sideras-Haddad

February 10, 2016

High Energy Particle Physics Workshop 2016

Outline

The ATLAS Detector and TileCal

Radiation Environment

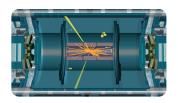
Our Aims

The Plastics

Sample Irradiation

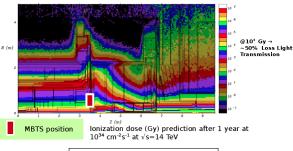
EPR Theory

Results


Transmission and Light Yield Results

Conclusions

The ATLAS detector and TileCal



- TileCalorimeter situated in ATLAS inner detector
- Able to detect energetic particles: hadrons, quarks, jets...

- 16 Minimum Bias Trigger
 Scintillator polystyrene plastics
 located on each of the ATLAS
 EndCaps
- First part of Trigger System tracking trajectories of particles

Radiation Environment

doi:10.1088/1748-0221/9/10/C10020

- MBTS plastics accumulated 0.1 \sim 0.4 imes 10⁴ Gy dose
- Does not cause permanent¹ damage to 2cm thick plastics
- But plastics are susceptible to radiation and are to be replaced²

¹T. Sasuga, Rad. Phys. Chem., **37**,1 (1991).

²_{4 of 15} Torrisi, Rad. Phys. Chem., **63**, 1 (2002).

Our aims

Suitable plastic replacement

PVT based plastics

- EJ200
- EJ208
- EJ260
- Bicron

Polystyrene based plastics

- Dubna
- Protvino

Understand damage

Characterization of damage

• Electron paramagnetc resonace

Simulation of EPR spectra

Density functional theory calculations

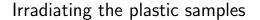
Relate to previous studies

- Light yield
- Transmission

The plastics under investigation

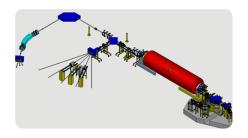
PVT plastics

- Two blue and one green emitting scintillator
- Unknown organic dopants added


Polystyrene plastics

- Three blue emitting scintillators
- Organic dopants: POPOP, pTP

lonization of plastics break C-H bonds³ introducing ions and unpaired electrons into samples⁴.

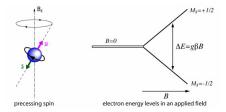

³L. Torrisi, Rad. Eff. Def. Solid, **145**, 271 (1998).

⁴_{6 of 15}. Kashiwabara, Jap. Rad. Res., **16**, 12 (1961).


Samples were cut to width 250 μ m smaller than stopping range 470 μ m calculated using SRIM. Calculated E_{loss} = 2.07 MeV for 6 MeV protons used to calculate dose.

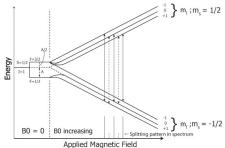
Absorbed dose calculated using

$$D_{\mathsf{Abs}} = \frac{I \cdot t \cdot E_{\mathsf{loss}}}{q \cdot m}$$


They irradiated using 6 MeV protons with the Van der Graff tandem accelerator to doses between 0.8 - 80 MGy.

EPR used to study of a single, unpaired electron is by the Hamiltonian

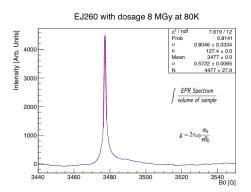
$$\mathcal{H} = \beta \mathbf{B}^T \cdot \mathbf{g} \cdot \mathbf{S}.$$


A single, unpaired electrons interaction with the external magnetic field and electromagnetic radiation (usually in microwave region)

Theory of EPR: A more complicated system

EPR used to study unpaired electrons and ions described by the Hamiltonian

$$\mathcal{H} = \beta \mathbf{B}^T \cdot \mathbf{g} \cdot \mathbf{S} + h \mathbf{S}^T \cdot \mathbf{D} \cdot \mathbf{S} + h \mathbf{S}^T \cdot \mathbf{A} \cdot \mathbf{I}.$$



Hyperfine interactions (A) and anisotropy of g-tensor come into play.

Analysis of experimental EPR

- The g-factor: gives information about spin environment
- Spin density: number of spins detected in sample

Creating "plastics"

Simulated sample crated in VASP for three isomers of PVT and one polystyrene. C-H bonds where removed, system was allowed to relax, and monomers randomly orientated.

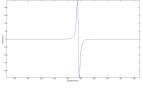
EPR calculations were run on $\rm QUANTUM$ ESPRESSO based on code developed by C. Pickard (doi: 10.1103/PhysRevLett.88.086403). Tensors g and A were analysed as more bonds were removed. We looked at $\Delta g=g$ - g_e

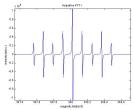
Analysis of simulated EPR

 Δ **g**-tensor components change when one, two, and three bonds are broken (first bonds in monomer)

$$\left(\begin{array}{cccc}
-0.02 & 0.02 & 0.00 \\
0.02 & 0.00 & 0.01 \\
0.00 & 0.00 & 0.01
\end{array}\right)$$

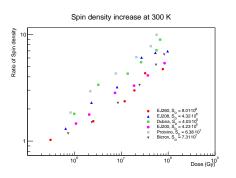
↓ one bond broken

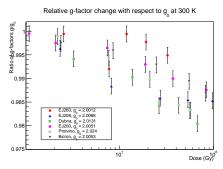

$$\begin{pmatrix} -45.11 & -1.93 & 0.94 \\ -1.99 & -42.91 & 0.83 \\ -1.72 & 0.13 & -17.64 \end{pmatrix}$$


↓ two bonds broken

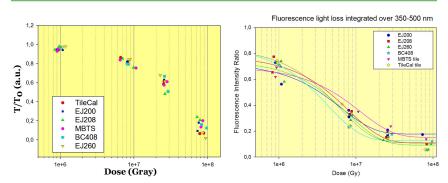
$$\left(\begin{array}{cccc} -114.55 & -72.26 & -14.91 \\ -45.79 & -421.31 & -30.94 \\ -12.32 & -40.69 & 79.46 \end{array}\right)$$

 $\downarrow\downarrow$ three bonds broken


$$\begin{pmatrix} -1145.96 & -241.46 & 2.13 \\ -105.92 & -54.86 & -30.05 \\ 29.94 & -32.06 & 625.16 \end{pmatrix}$$



Experimental EPR results


As dose increases, the g-factor decreases and spin density increases. Additional ions shield unpaired electrons from external magnetic field. Possible ions include electrons, alkly-ions⁵, and hydrogen⁶.

⁵J. Morton, Chem. Rev, **64**, 4 (1964).

⁶_{13 of 15} Barklie, Phys. Rev. B., **61**, 5 (2002).

Transmission and light yield results

The plastics transmit and yield less light with an increase in dose. Not much difference can be seen between samples⁷.

 $^{^{7}}_{14}$ of $^{15}_{15}$

Conclusions

- Irradiated samples show general degradation with an increase of dose
- Broken bonds induce secondary ions that shield the detected electrons and ions resulting in a lower g-factor
- Results correspond to those with light yield and transmission