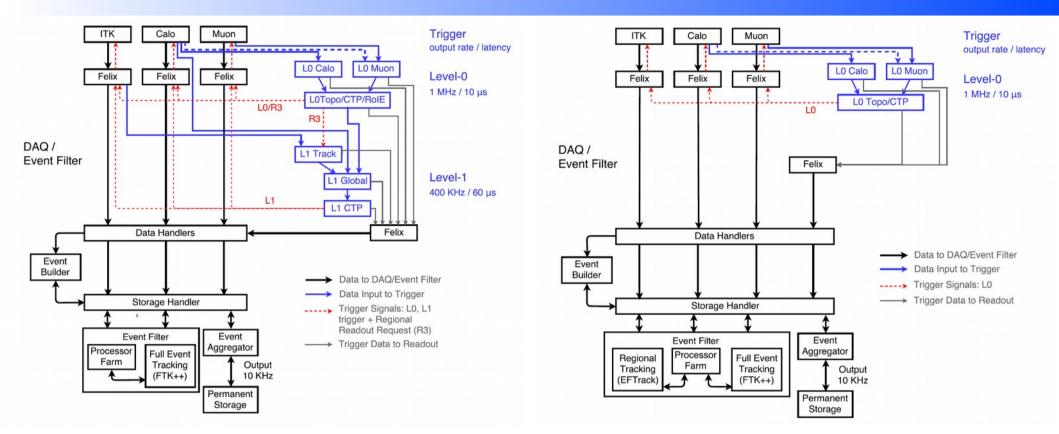
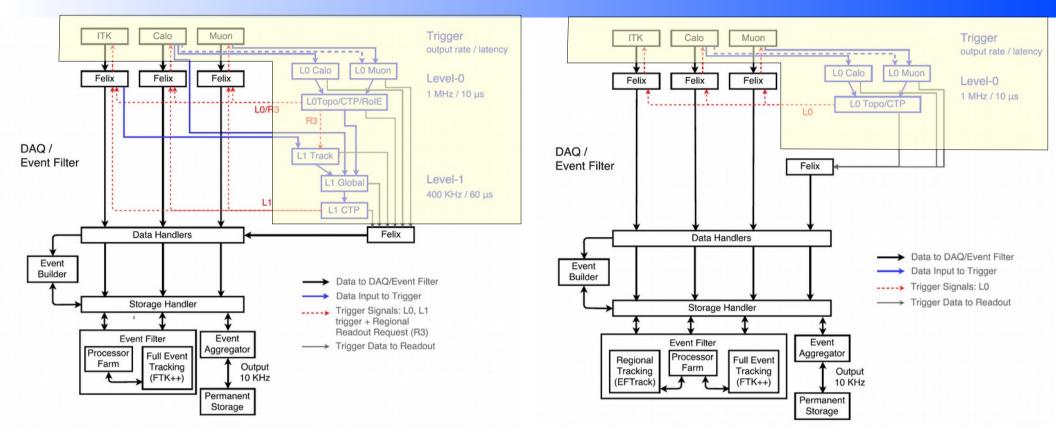
ATLAS DAQ for Run4


Outline

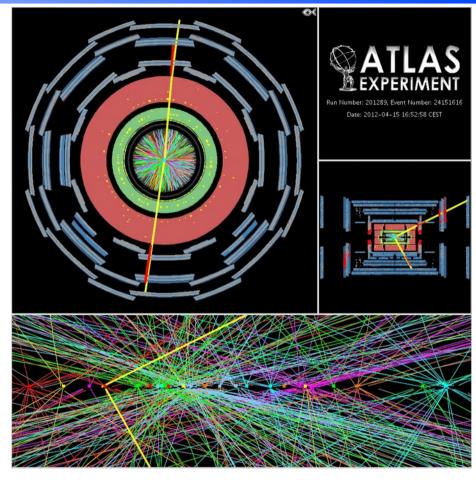
- ATLAS in Run4
- Overall TDAQ Architecture and Hardware Tracking
- DAQ Requirements and Design
- Storage and Event Filter
- Outlook

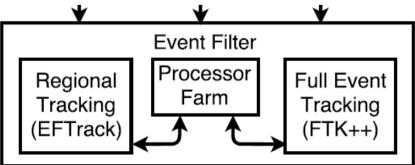
ATLAS Detector in Run4


- Significant detector upgrades
 - new all-silicon inner detector (ITK)
 - new forward calorimeter being considered
- Complete transition to GBT (-like) detector interface
 - electronic replacement for all legacy detectors (muon spectrometer and calorimeters)
 - partially implemented in Run3
- New Trigger, Timing and Control infrastructure
 - passive optical network tree
 - configurable/customizable edge element (Local Trigger Interface LTI)
- New Trigger and Data Acquisition

Overall TDAQ architectures and scenarios

- Two main architectures being considered
 - driven by the detector readout capabilities
 - different hardware trigger organization
- L0/L1
 - two hardware trigger levels \rightarrow 1 MHz 400 kHz
- L0
 - one hardware trigger level \rightarrow 1 MHz


Overall TDAQ architectures and scenarios

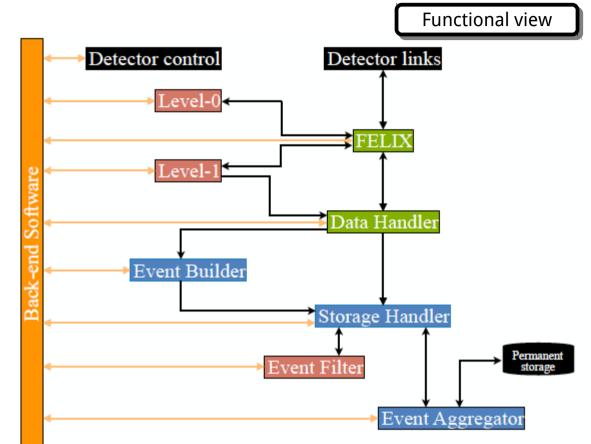


- No major differences in the DAQ architecture
- Readout and Filtering rate
 - L0/L1 \rightarrow 400 kHz
 - but some detector may readout 1 MHz
 - $L0 \rightarrow 1 \text{ MHz}$

Hardware Tracking

- Tracking major component of processing time and key tool in highpile environment
- Specialized device being deployed for Run2/3
 - Fast Tracker (FTK) based on track patterns stored in associative memory (AM) banks (talk from S. Veneziano)
- In Run4 expect dedicated tracking devices in Event Filter
 - full tracking for a fraction of the input rate (100 kHz)
 - in L0 scenario, RoI-based tracking at 1 MHz
 - part of L1 hardware trigger in L0/L1
- Tracking devices based on the same technology
 - AM banks, FPGA, ...

DAQ: operation point and design principles


Parameter	L0/L1	LO	Run2/3
Input Rate	400 kHz/ 1 MHz (*)	1 MHz	100 kHz
Filtering Rate	400 kHz	1 MHz	100 kHz
Output Rate	10 kHz	10 kHz	1 kHz
Event Size	5 MB	5 MB	1.5 MB

*some detectors planning readout at L0 rate

- Significant operation envelop change
 - 10-fold in readout rate and output rate (L0-scenario)
- Increase decoupling between data movement and data processing
 - at the implementation and operation level
 - expose a well defined, common interface allowing heterogeneous data processing infrastructure
 - servers, (custom) tracking devices, accelerators, remote resources, ...
- Rely on "COTS" as much as possible
 - hardware and software

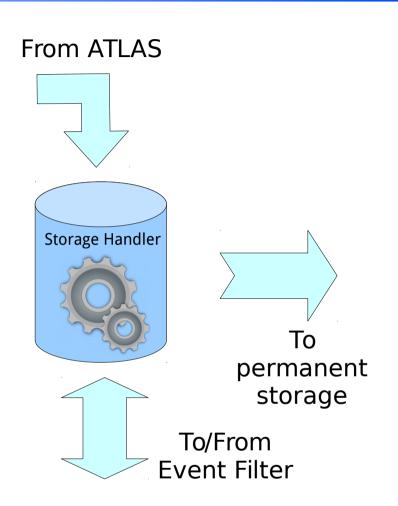
DAQ Architecture

- At high-level, classic architecture
 - Readout infrastructure to transport data out of the detector
 - Dataflow infrastructure to build events and buffer during filtering time
- Introduce a large storage area before filtering
 - high-level interface between dataflow and filtering
 - allow for a heterogeneous farm (accelerator , tracking devices, ...)
 - decouple filtering operation from LHC cycle
 - take advantage of interfill periods → best use of compute resources
 - as pioneered by LHCb and soon ALICE

Detector Interfacing and Readout

• FELIX extended to the full ATLAS

- principles and functionalities as described by J.Zhang
 - heterogeneous router
 - unique detector interface
- New hardware/software implementation
 - faster interface, denser solution, new TTC technology
- Low-latency links towards trackingdevice
 - RoI data duplication into serial output links
 - RoI map decoding and data-tagging
- Considering needs for detectorspecific firmware
 - for time-critical functionalities
- Data Handler implements detectorspecific data processing
 - aka SW ROD in Run3

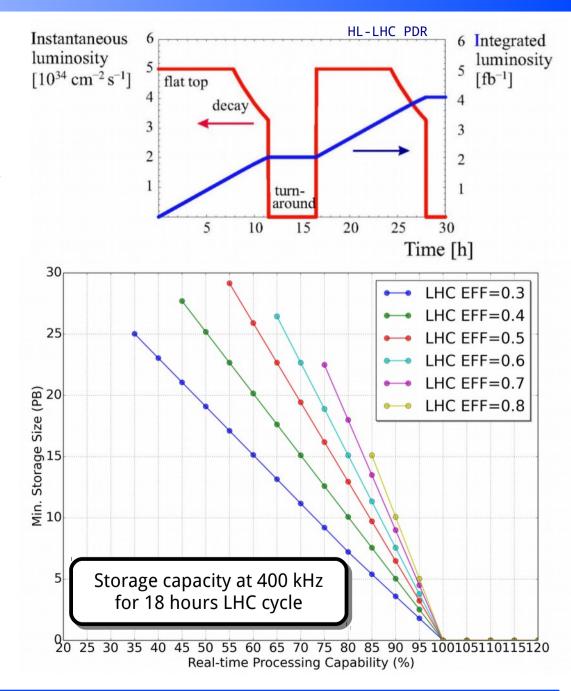

	two-level architecture
Links from detectors	11000
FELIX I/O card	${\sim}450$
FELIX servers	~230
Low latency links	~ 900
FELIX NICs (100 Gbps)	$\sim \! 250$
Data Handler PCs	${\sim}400$
Data Handler NICs (100 Gbps)	~ 500

Level-1 Trigger processors DCS Monitoring Data Handler NIC FELIX I/O card ONU Detector specific Ctl. & Cfg. electronics FELIX I/O card LTI ONU x N OLT CTP Versatile link PON Switched connection

W. Vandelli - DAQ@LHC 2016

Storage Handler

- Storage Handler is core data-flow infrastructure
- Large buffer area, decoupling DAQ and filtering operation
- Offload data movements to distributed file system infrastructure
- Still need to provide
 - data bookkeeping
 - event assignment
 - load balancing
- Do not need dedicated storage for accepted events
 - "Event Aggregator" fetch and aggregates events on their way to permanent storage
 - e.g. EOS can be mounted as a local filesystem


Storage Requirements: Capacity

• Storage capacity is a trade-off

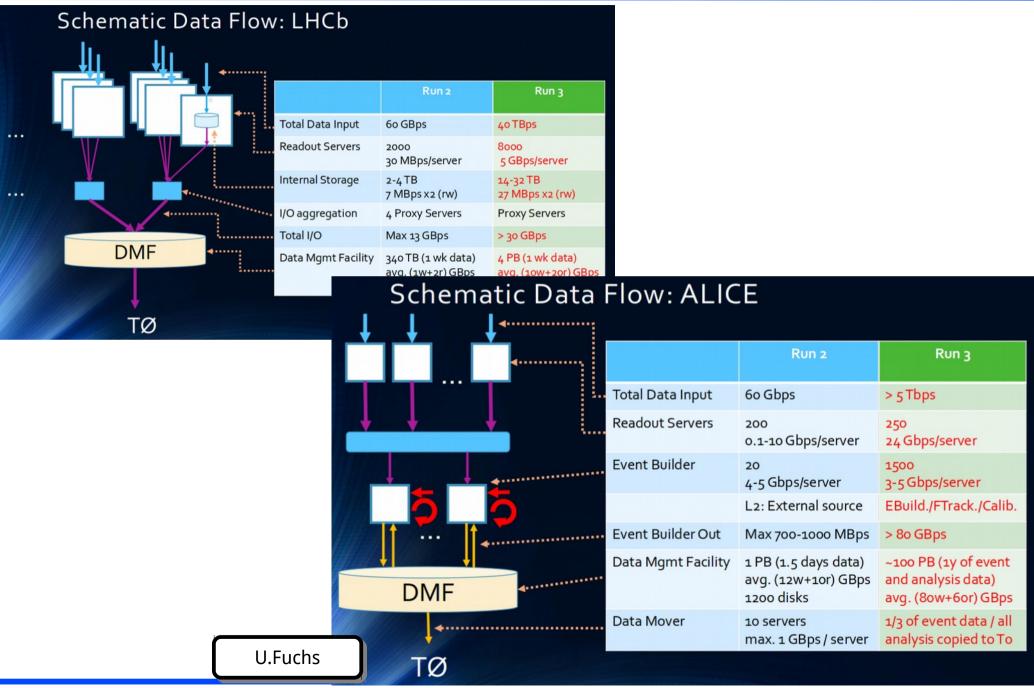
- volume vs level of asynchronous processing
- Depends on
 - typical LHC cycle and efficiency
 - considered timescale

• Several tens of PB for a single cycle

• 20 – 60 PB

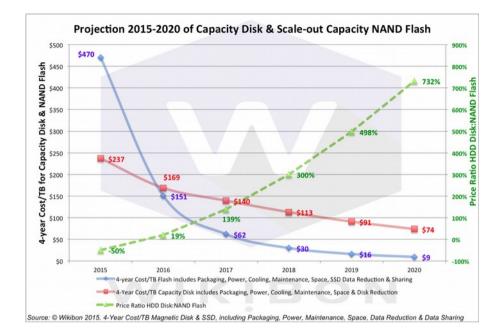
Storage Requirements: Throughput

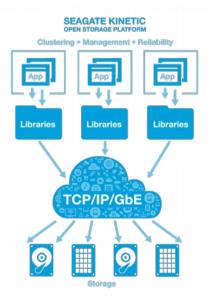
Parameter	L0/L1	LO
Input from detector	2 TB/s	5 TB/s
Output to tracking devices	<0.5 TB/s	<1 TB/s
Output to farm	<2 TB/s	<2 TB/s
Output to off-line	50 GB/s	50 GB/s

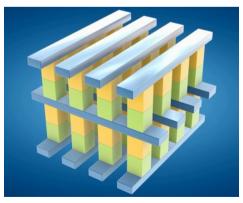

- Throughput is real challenge
 - especially if considering spinning hard-drives
- Exacerbated by evolution of drive characteristics
 - capacity growing much faster than I/O capabilities
- Assume 10 TB/drive
 - 50 PB \rightarrow 5000 drives
- Assume (optimistic) 100 MB/s/drive
 - 5 TB/s → **50000 drives**

Real world example: Backblaze

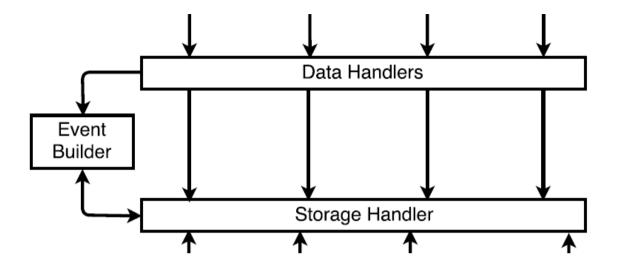
- Backblaze: on-line backup founded in 2007
 - open policies: share hardware designs and operational data
 - hard-drive failure database (including SMART data)
 - yearly statistical report on drive failures
 - by end of 2015 their data centre operated ~56000 spinning drives
 - ~200 PB deployed capacity
- Backup is a very specific workload
 - capacity problem with rare data readout, no associated processing (HLT farm)
 - results may not apply directly to our case
- Average yearly failure rate <3%
 - i.e. 4 drive/day
- 45-drives "Storage Pod" → ~8000 USD
 - ~8 MUSD for ~50000 drives

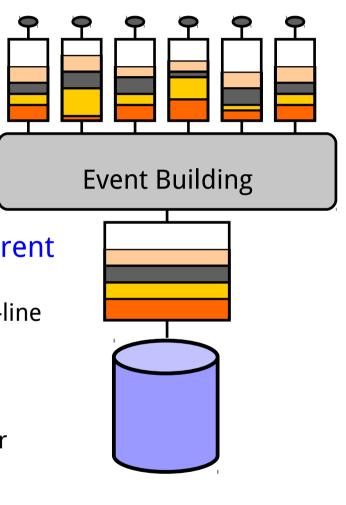

Learn from the future



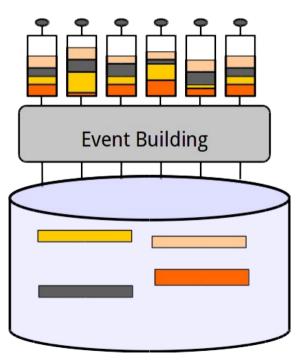

W. Vandelli - DAQ@LHC 2016

Storage Technology Evolution


- Looking at storage technologies 10 years from now
- Evolution of existing technologies
 - ~this year consumer NAND cheaper than spinning drive
 - Lustre and GPFS
- New technologies
 - waiting to see 3D XPoint
- Innovations in the storage stack
 - Seagate Kinetic, ...

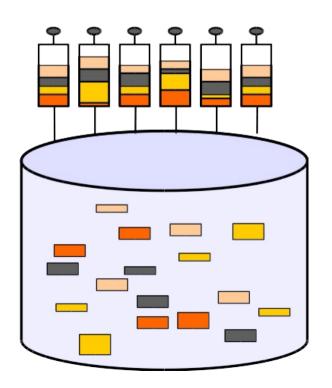


Event Building



- Aggregating partial data fragments into a coherent unit
 - convenient format for filtering and necessary for off-line transmission
- Really need to gather all pieces together?
 - effectively in Run2 event building takes place only for accepted events
 - need a recipe to access or discard any piece
- "Physical" and "Logical" event building

Event Building


- Physical EB with dedicated resources
 - if needed, isolate EB specific network challenges
 - event-level data compression
 - ATLAS Run2 events 50% compression ratio

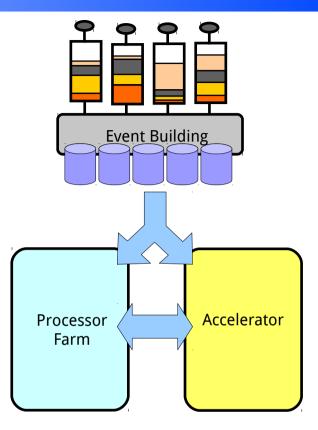
- Physical EB offloaded to storage
 - possible optimisation
 - depends on storage performance, implementation, ...

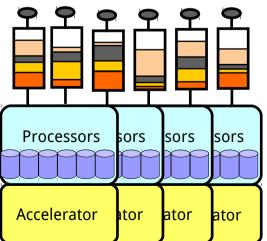
• Logical EB

- only aggregate
 information on
 fragment location
- physical data still fragmented
- key-value database

Event Filter Implementation

- Expect the Event Filter to include different technologies
 - Run1/2/3 "homogeneous" processor farm
 - Run4 processor farm aided by accelerators
 - at least for tracking
 - do not want to exclude other arising technologies
- Clear interface allowing various processing implementations
 - what better than files and events?
 - or object storage
 - in Run1/2, HLT
 - requests data-fragment from Readout system → has knowledge the DAQ cabling and partitioning
 - use offline software with a software layer mating it to the DAQ environment


• Expect event processing to be RoI-based


• reduced data-access for promptly rejected events

Parameter	L0/L1	LO	Run2	
Filtering Rate	400 kHz	1 MHz	100 kHz	
Overall Compute Power	11 MHS06	>11 MHS06	0.8 MHS06	
Computer Power excluding tracking	5 MHS06	5 MHS06	—	
based on projections from Run1				

Storage Alternatives: Plan B

- Current design relies on a distributed storage infrastructure
 - scalable
 - affordable, reliable
 - does it all for us
- Better have a plan B ...
- Fallback on a more classical architecture
 - full-event building at input rate
 - keep the interface simple: just an event
 - buffering on the building or filtering nodes
 - buffering on filtering nodes scales with farm size
 - monolithic accelerators (tracking) may require upstream buffering
 - storage for selected events before permanent storage

Outlook

- Initial design for ATLAS data-acquisition in Run4
 - two main scenarios related to detector capabilities evolution
- Full deployment of FELIX and software-based detector-specific processing
 - expect new implementation wrt Run3
 - new TTC interface
 - low latency output link for L1 trigger
 - interested in modular firmware experiences
- DataFlow and Event Building centered around a large storage system
 - decouple filtering from LHC operation
 - *best use of deployed compute resources*
 - expose well-defined stable interface
 - enable heterogeneous Event Filter implementation
 - offload data transport to distributed file system engine
- Challenging (but possible?) implementation today
 - confident in the next 10 years of storage technology evolutions
 - learn from (work with) the ALICE and LHCb experience in Run3

Detailed requirements

DAQ and Event Filter requirements					
	Level-0 / Level-1	Level-0			
Input rate	400 kHz	1 MHz			
FELIX input links	11000	11000			
FELIX output links (100 Gbps)	250	700			
FELIX input rate:					
Inputs to Level-1:					
ITk	100 kHz	NA			
Detector readout:					
ITk-pixel	1* MHz	1 MHz			
ITk-strip	1* MHz	1 MHz			
Calorimeters	1 MHz	1 MHz			
Muon	TBD	TBD			
CPU "power" data handler	TBD	TBD			
Storage input rate	400 kHz	1 MHz			
Event building rate	400 kHz	400 kHz or 1 MHz			
<event filter="" processing="" time=""></event>	xxx ms	xxx ms			
Output	10 kHz	10 kHz			

* Current baseline (but 400 kHz not excluded)