

- 1 -

The evolution of PPersistent
BBack-EEnd for the AATLAS

information SSystem of TTDAQ
(P-BEASTP-BEAST)

Igor Soloviev, UCI

- 2 -

IS Introduction

● In ATLAS online world the Information Service
(IS) provides a means of sharing information
between software applications in the distributed
environment

Information
Provider

Information
Reader

Information
Subscriber

Information
Repository

insert
update
remove

get

subscribe
notify

send command
● Is widely used for

online operational
monitoring by
DAQ, trigger and
detectors

● Information is not
persistent and
exists while service
is running

IS data: named object
containing several

attributes of primitive
type, structure or

array of them

Objects with
common properties
are described by IS

class

- 3 -

P-BEAST Requirements
● Main use cases: post mortem analysis of IS data by experts

and online dashboards for shifters
● Archive any type of raw IS data including various numeric

types, strings, date/time, structures and arrays of them
● Support schema evolution (i.e. changes of IS classes)
● Satisfy challenging data input rates and volumes (avoid back-

pressure on IS)
– O(102) IS information repositories (servers)
– O(106) variables (attributes) of O(105) objects
– up to 1 Hz refresh rate for some objects,

need to absorb peaks of the insertion rates

● Provide API to access archived data
● Provide graphical visualization tools for archived data
● The interfaces need to be available on ATLAS experiment

area (P1) and GPN

- 4 -

P-BEAST High Level Design
ATLAS Point-1

IS
repository

IS
repository

IS
repository

IS
repository

P-BEAST
subscriber

P-BEAST
subscriber

IS
repository

P-BEAST
subscriber

DB
P-BEAST tools

DB

● subscribe IS and get data on every update
● save data to some databases
● make data available inside P1 and on GPN
● provide visualisation tools

- 5 -

First Prototype (2009-2013)
● Considered several approaches. The NoSQL technology

(Cassandra, Hbase and MongoDB) and time-series
oriented tools (RRDTool, Graphite, OpenTSDB and KDB)
looked like most suitable candidates.

● Performed evaluation https://cds.cern.ch/record/1402973
and selected Cassandra:

– designed to handle high write load from multiple clients and can
absorb peaks in the write rates

– scale horizontally, easy to increase performance by just adding
more nodes (scales linearly assuming that data keys are
randomly distributed)

– schemaless allowing evolution of IS classes
– data model naturally supports time-series data (timestamp as key

in key:data pairs), no loss of data granularity in time
– easy deployment (fast prototyping)
– low maintenance requirements
– high data availability (replication, no single point of data failure)

https://cds.cern.ch/record/1402973

- 6 -

IS Data in Cassandra

● Create DATA column family (table) per run config (ATLAS, initial)
● Concatenate IS class/object ID with attribute name to identify

row in above column family
● Each row contains name:value pairs, where the name is data

modification timestamp and the value is a value of attribute data

● Create few extra column families to describe attributes and
objects per IS class, etc. to be able to perform data queries

DATA@ATLAS

Object-x.attribute-1

name

value

timestamp
(internal)

IS timestamp

IS value

Cassandra
timestamp

…...
Object-x.attribute-2 …...

Object-x.attribute-N

Object-z.attribute-L

… millions of rows …

…...

…...

- 7 -

Cassandra HW and
Performance Results

● Evaluated several models for deployment. Finally
installed P-BEAST on 3 powerful (year 2012) nodes on
Point-1 (dual CPU Xeon X5650 @ 2.67GHz, 24 GB
RAM, 4x1TB RAID)

● Use data replication factor 2 (and raid 0)

30000

25000

20000

15000

10000

5000

0

TPS

Time

● Subscribe subset of DAQ IS
servers and classes (below
1/4 of total IS information)

● 6 MB/s writing aggregate
performance (0.5 TB / day!)
and 18K updates per second

● Introduce 5% data smoothing
(skip “similar” numeric data)
to reduce writing to 0.8 MB/s

- 8 -

Problems with Cassandra
● Significant changes between major versions, some bugs
● For our case the data storage cannot keep more than two months

of raw data, so need to remove old data (move to EOS) and provide
yet another mechanism to access them

– i.e. can only use Cassandra as an intermediate buffer
● Problems with data compaction (for removal and maintenance)

– compaction requires 50% of free disk space (i.e. use <50%) in addition
to inefficient storage (e.g. extra 8 bytes for every data point)

– compaction has problems (may never finish with random errors
even on powerful node), if data row is large (above 60 MB);
querying of such data also is very inefficient => no vertical scaling

● Forced to redesign
DB schema adding
time buckets to row
ID (one row keeps
data for few hours)

raw productraw product

lacking
required

self-sufficiency

lacking
required

self-sufficiency

append-only
design

append-only
design

space
inefficient
space

inefficient

problems only
become visible
during real use

problems only
become visible
during real use

 Object-x.attr-1 …...

 Object-x.attr-1.period-1 ...

…....
 Object-x.attr-1.period-2 ...

 Object-x.attr-1.period-y ...

redesign

- 9 -

Splunk - Data Storage and
Visualisation Prototype (2013)

● Cassandra does not provide any data visualization tools

● Splunk was advertised by IT and was evaluated as both the P-
BEAST Web visualisation back-end and the database itself

– http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7097473

● Splunk:
– is a search engine for machine data (log files, configuration,

monitoring metrics, etc.)
– collects and indexes data to enable:

Searching • Reporting • Correlating • Trending • Alerting
– has been built to scale (up to 100 GB / node / day)
– provides searches (>120 commands for data manipulation)
– allows to configure Web dashboards

● Splunk is a commercial product with limited free license

- 10 -

Splunk and P-BEAST
Architecture

● Forwarders, Search Head
and Indexers are
components of Splunk
running on different hosts
for maximum performance

● P-BEAST receiver gets IS
data and stores them into a
file (stream) in a text format
optimised for Splunk

● The text format uses ~200
bytes per IS attribute value

● The goal of evaluation was
to find optimal configuration
of Splunk components from
performance and disk
utilization points of view

SPLUNK sourcetype=is index=HLTSV
host=TDAQ.DF.HLTSV.Events source=HLTSV.LVL1Events

timestamp=1395131133784309 value=505358093

SPLUNK sourcetype=is index=HLTSV
host=TDAQ.DF.HLTSV.Events source=HLTSV.LVL1Events

timestamp=1395131133784309 value=505358093

- 11 -

Splunk-based P-BEAST
Dashboard Examples

- 12 -

Splunk Performance
● When inserted to Splunk, the input text

is internally compressed in ~5 times
● Insertion rate scales proportionally to

number of indexers and reaches 2
MB/s (~10000 IS updates/s) per single
node (measure results on the HW used
for Cassandra deployment, see slide 7)

● In accordance with Splunk experts, it
will be better, if real-time (non
historical) data are inserted

● Querying performance depends
on many indexing parameters
and in general case allows to
scan about 100,000 values per
second and per indexer node

● Insertion of realistic data for a
large time interval on request
(weeks, months) results big
latency (minutes) before data
become visible in browser

- 13 -

Problems with Splunk

● Large overhead when store data
– Original non-optimized text format goes into internal

Splunk database; little user control on internal
database structure

– Even compressed, the overhead is ~5 times
vs. raw binary data

● Impossibility to delete old data by time period
– If we cannot keep all data, we will need to remove

old ones

● Inefficient graphical interface for large datasets
– Downsampling is performed on client side (i.e. by

JavaScript running inside user's Web browser).
Takes minutes to display result containing O(106) or
more

append-only
architecture

append-only
architecture

space
inefficient
space

inefficient

lacking
required

self-sufficiency

lacking
required

self-sufficiency

slow
GUI

slow
GUI

- 14 -

Motivations for development
of new P-BEAST (2013)

● Using available HW (3 nodes, 12 TB) we can build a
system to archive small fraction of IS data (<1/4) using
Cassandra and Splunk

– To be able to get all data from IS we need an order
of 10-20 powerful nodes

– To keep all IS data for Run 2 we need more than
500 TB of disk space

● If all data cannot be kept on our storage, with Cassandra
we can export them to EOS / Castor, but then we need
to develop extra software to access the data, e.g. re-
import when needed, or use some other DB tools

Above conclusions are based on the state of the
Cassandra and Splunk in 2013. They may be

significantly improved since then.

- 15 -

Ideas About New P-BEAST DB
● We need something working and do not like to restart evaluation

cycle without 100% confidence. Try to make own simple solution.
● Get IS data and save into some files

– Use language and platform neutral format for data serialization
– Read/write efficiency (binary format parsing can be 100 times

faster and several times smaller than text; random access to data
inside file is mandatory requirement for remote file systems)

– Moderate number of files is tolerated (O(104) per directory is OK to
keep good read performance using ext4 file system)

● Export such files on EOS for long-term storage
● Provide interfaces for data retrieval and visualisation

IS server

IS server

IS server

pBeast

Point-1

EOS

...

...

- 16 -

● New P-BEAST file storage is based on low-level primitives of Google
Protocol Buffers (see addendum) with data compaction (extend IoV for
unchanged data, binary format, integer variants) and compression (zip)

● Create files per time buckets and arrange by IS classes and attributes
● Support any IS data including arrays / nested types and end-of-validity

(none implemented in Cassandra/Splunk); support schema evolution
● Microseconds precision for timestamps relative to base value in header
● Write at once, sequential data access (no file size limits), zip per object
● Random read access (see yellow numbers for order), efficient on EOS

 header obj 1 obj 2 obj Nobj 3 catalogue I

8
name data (ts:value)

obj-1 idx(1,1)
obj-2 idx(2,1)
... ...

obj-N idx(N,1)

timestamp value
ts1 v1

ts2 v2

... ...

tsN vN

...1 34 2

New P-BEAST DB Files

- 17 -

New P-BEAST Data Flow
● The receivers get IS data,

keep in-memory, reorder,
compact and store to local
repository containing many
small files

● The merger combines
small files above certain
age and stores to merged
repository

● The file server accesses
repository data; performs
downsampling and keep
results in cache

● The main server accepts
client requests via CORBA
and REST API; it talks with
receivers and file servers
and combines their
responses to answer user

● The files appeared in
merged repository are
synchronized with EOS

receiver

IS
repository

file server

merger

Local repositoryLocal repository

receiver

IS
repository

main
server

http

corba

ATLAS Point-1

Merged rep.Merged rep.

corba

EOSEOS

http

xrootd

downsample
cache

- 18 -

P-BEAST DB Performance on old
HW (until 2015-09)

● experienced little problems with insufficient RAM, when archived all IS
data from ATLAS and other sources before found optimal configuration

● sustain IS system 500 KHz IS attributes refresh rates (~100K writes/s)

● did not remove raw data since beginning of Run 2 storing 1 TB/month
use disk balancing mechanism for merged repositories on 3 nodes

- 19 -

● Installed two new powerful nodes: dual CPU Xeon E5-2680V3 @ 2.5GHz, 256
GB RAM, 8x4TB RAID; old nodes are still in use and contributed to performance
alongside new ones

● One new node is sufficient to get IS data from all data taking runs on Point-1!
Disk space of two nodes is sufficient to keep raw data of Run 2.

● Gain stability, zero problems with P-BEAST software since then

Performance on new HW

old hw new hw

- 20 -

P-BEAST Dashboard
● In 2014 considered several technologies including

Kibana and Grafana back-ends for dashboard
implementation and various intermediate data source
engines including ElasticSearch, Graphite, OpenTSDB
and Redis

● After several prototypes selected Grafana and
integrated P-BEAST as it's data source via REST API

– managed without touching too much the Grafana's
code (really 3 or 4 lines of code); the Grafana plugin
mode worked pretty well

– at the same time the documentation to build plug-ins in
practice does not exist and some kind of reverse
engineering to write some meaningful code (starting
from the Graphite data source) was really required

- 21 -

Dashboard Details
● The biggest challenge in the interaction between Grafana and

P-BEAST was to define a data format that could minimize the
amount of data to be transferred and (at the same time)
required a very little post-processing in the browser

– put an effort on representation of arrays (each index may
have special meaning in user data)

– perform downsampling on P-BEAST server side
– add error bands option allowing to show sampled,

maximum and minimum values by time interval
● Browsers demonstrate very different performance (next slide):

– Firefox could hang forever when receiving a lot of data
– Chrome is 3-4 times faster, but not available* in SLC6

● Query constructor guide for dashboard configuration helps
user to navigate through available classes, attributes, IS
repositories and object names

- 22 -

Dashboard GUI Performance
● Since downsampling is performed on the server side, there is no

need to investigate huge numbers of data points per serie and
such numbers are naturally limited by screen resolution

● Varying number of series and data points per serie
● Scales linearly
● For an average

CERN desktop
computer and
SLC6's Firefox
50 to 100 point
per serie look
like acceptable
even for
thousand series
on the same
dashboard (1600
ROS Robin
channels)

- 23 -

Dashboard Example

- 24 -

Summary and Plans
● Have a product satisfying our requirements, no known

performance and functional issues
– based on low level DB implementation adopted for our

needs, required a bit more programming, but time spent for
design & implementation is comparable with time spent for
learning Cassandra and work around found issues

– gives an order of magnitude of space utilisation and
performance efficiencies vs. generic DB solutions

● Consider a possibility to use for other types of time-series
data: DCS conditions data / required for offline
reconstruction, network and farm monitoring

– collect new requirements

● Have a stable solution, can reconsider available
technologies and make improvements with no hurry

- 25 -

AddendumAddendum

- 26 -

Candidate Technologies for own
storage implementation (2013)

● Raw binary: performance efficient, but no cross-platform and
language compatibility :-(

● Boost serialization: moderate performance and space overhead,
but no cross-language (Java) compatibility :-(

● Selected Google Protocol Buffers among similar technologies:
– Language / platform neutral, extensible way of serializing structured

data for use in communications protocols and data storage
– Serialize data into a binary wire format (compact, forwards and

backwards compatible, not self-describing)
– A developer defines data structures (called messages) and services

in a .proto definition file and compiles that with protoc. This
compilation generates code that can be invoked by a sender or
recipient of these data structures.

– Protocol compilers for C++, Java and Python available to the public
under a free software, open source license and used extensively at
Google for almost all RPC protocols, and for storing structured
information

- 27 -

ProtoBuf Message Example

 message Point {
 required int32 x = 1;
 required int32 y = 2;
 optional string label = 3;
 }

 message Polyline {
 repeated Point point = 1;
 optional string label = 2;
 }

 message Point {
 required int32 x = 1;
 required int32 y = 2;
 optional string label = 3;
 }

 message Polyline {
 repeated Point point = 1;
 optional string label = 2;
 }

 Polyline pl;
 Point* p1 = pl.add_point();
 p1->set_x(10);
 p1->set_y(10);
 Point* p2 = pl.add_point();
 p2->set_x(20);
 p2->set_y(20);
 fstream out("myfile",
 ios::out | ios::binary);
 pl.SerializeToOstream(&out);

 Polyline pl;
 Point* p1 = pl.add_point();
 p1->set_x(10);
 p1->set_y(10);
 Point* p2 = pl.add_point();
 p2->set_x(20);
 p2->set_y(20);
 fstream out("myfile",
 ios::out | ios::binary);
 pl.SerializeToOstream(&out);

 fstream in("myfile",
 ios::in | ios::binary);
 Polyline pl;
 pl.ParseFromIstream(&in);
 int x1 = pl.point(0).x();
 int y2 = pl.point(1).y();

 fstream in("myfile",
 ios::in | ios::binary);
 Polyline pl;
 pl.ParseFromIstream(&in);
 int x1 = pl.point(0).x();
 int y2 = pl.point(1).y();

2) Serialize and write

1) Design messages
and compile

3) Read and
deserialize

- 28 -

ProtoBuf: messages structure (1/2)

● 1) Uses variants (a method of serializing integers using one or
more bytes; smaller numbers take a smaller number of bytes)

– Each byte in a varint, except the last byte, has the most
significant bit (MSB) set – this indicates that there are further
bytes to come. Least significant group comes first.

● Signed integers are stored using ZigZag algorithm (no details here...)

 message Test1 {
 required int32 a = 1;
 }

 message Test1 {
 required int32 a = 1;
 }

 08 96 01

 08 96 01

a = 150 (0x96) & serialize

get 3 bytes!
why?

 1 => 0000 0001 (1 byte 01, MSB = 0)
 150 => 1001 0110 0000 0001 (2 bytes 96 01) how:
 1X001 0110 0X000 0001
 000 0001 001 0110 (drop MSB and reverse 7bits groups)
 “normal” binary 10010110 = 2+4+16+128 = 150

 1 => 0000 0001 (1 byte 01, MSB = 0)
 150 => 1001 0110 0000 0001 (2 bytes 96 01) how:
 1X001 0110 0X000 0001
 000 0001 001 0110 (drop MSB and reverse 7bits groups)
 “normal” binary 10010110 = 2+4+16+128 = 150

- 29 -

ProtoBuf: messages structure (2/2)

● 2) A serialized message is a sequence of keys and pair.
Above “08” encodes field number and wire type:

where available wire types are:
– 0 => varint for [s|u]int32, [s|u]int64, bool, enum
– 1 => fixed64, sfixed64, double
– 2 => length-delimited types (e.g. string) and messages
– 3,4 => deprecated (start/end of groups)
– 5 => fixed32, sfixed32, float

 message Test1 {
 required int32 a = 1;
 }

 message Test1 {
 required int32 a = 1;
 }

 08 96 01

 08 96 01

a = 150 (0x96) & serialize

get 3 bytes!
why?

 ((field_number << 3) | wire_type) ((field_number << 3) | wire_type)

- 30 -

ProtoBuf: sizes of messages

● Because of compatibility across versions and optional
fields every field of message has at least 1 byte overhead

● Every embedded message has key prefix as well. When
our message is a part of another message, it is encoded
as length-delimited type, so:

 message Test1 {
 required int32 a = 1;
 }

 message Test2 {
 repeated Test1 data = 1;
 }

 message Test1 {
 required int32 a = 1;
 }

 message Test2 {
 repeated Test1 data = 1;
 }

 1A 03 08 96 01

 1A 03 08 96 01

a = 150 (0x96) &
serialize Test2

get 5 bytes for
1 data item!

- 31 -

ProtoBuf: issues

● Keys overhead (as described on previous slides)

– Can be quite significant and visible for small types

● Files Parsing

– ProtoBuf parser reads a file into buffer (no random access)

– Has soft limit on buffer size (80 MB by default)

– Can be enlarged to 512 MB (theoretically up to 2 GB, but
strongly not recommended)

– For DB-like applications it is recommended to read a
fraction of data into user buffer and to create a stream
from it to be used by ProtoBuf (cumbersome, no thanks!)

- 32 -

File Storage

● Decided not to use ProtoBuf
messages and compiler

● Instead use efficient low-level ProtoBuf methods to
serialize basic types

– Define file structure as needed for random access

– No message and field key's overhead

– Of course, requires more development to write
code accessing such files

● Implemented for C++

● Create a file per attribute for given number of data
items of time interval

 1A 03 08 96 01

 1A 03 08 96 01

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Long-term Goal
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

