ALICE / LHCb Storage Needs for Run3

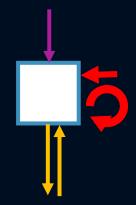
U. FUCHS / CERN

ALICE & LHCb storage systems for Run 2 and 3

Storage needs & systems

- For Run 2: In Production
- For Run 3: Under design / development

Future ? Numbers ?


Cum Grano Salis !

Disclaimer: This talk is not suited for people on a low-sodium diet.

Data Flow: ALICE

- Strategy Run 2:
 - Raw data from the DAQ is moved to Tzero for reconstruction /analysis
- Strategy Run 3:
 - Compute nodes build time frames, run calibration, fast tracking, store
 - Data stored on-site
 - When cpu cycles are available (during data taking, fills, pauses ..):
 - Read-back data, re-calibrate, reconstruction.

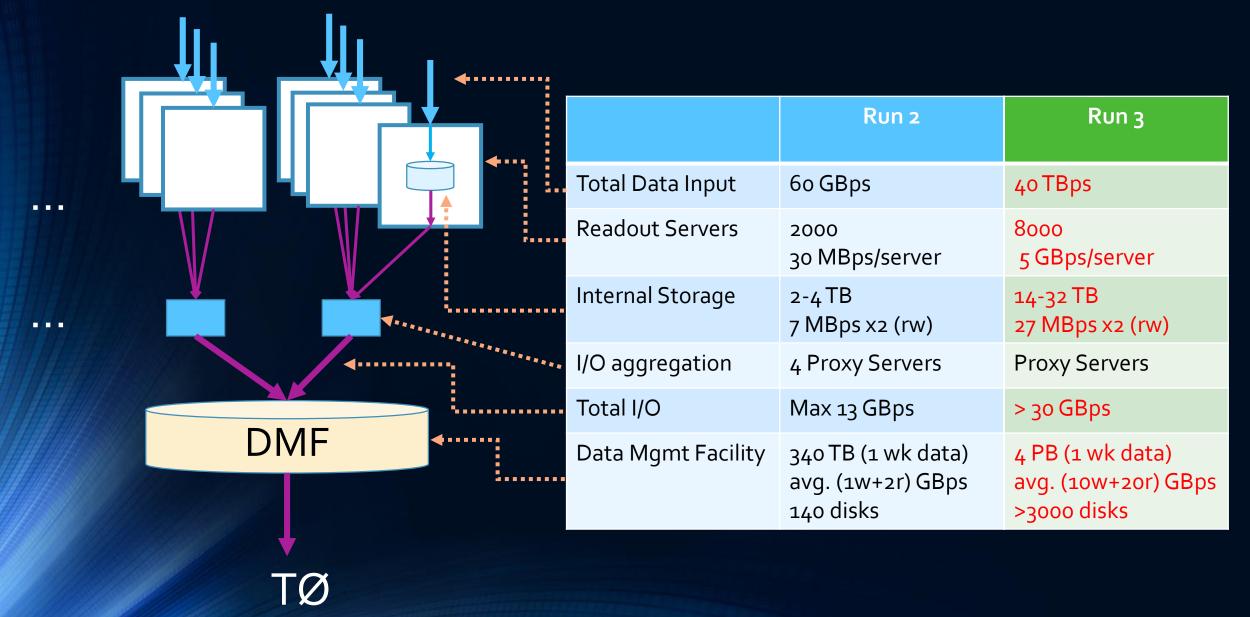
Schematic Data Flow: ALICE

4••••••

↓		Run 2	Run 3
	Total Data Input	60 Gbps	> 5 Tbps
	Readout Servers	200 0.1-10 Gbps/server	250 24 Gbps/server
	Event Builder	20 4-5 Gbps/server	1500 3-5 Gbps/server
		L2: External source	EBuild./FTrack./Calib.
*	Event Builder Out	Max 700-1000 MBps	> 8o GBps
4	Data Mgmt Facility	1 PB (1.5 days data) avg. (12w+1or) GBps 1200 disks	~100 PB (1y of event and analysis data) avg. (80w+6or) GBps
	Data Mover	10 servers max. 1 GBps / server	1/3 of event data / all analysis copied to To

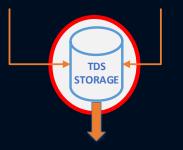
TØ

....


DMF

Data Flow: LHCb

- Strategy :
 - Read-out nodes record locally
 - L2 processing done on r/o node
 - Between fills: at 100%
 - During fills: if CPU cycles available: at reduced speed
 - Advantage
 - No shared file system needed up to R/O node level
 - Issues
 - Nodes process at its own pace
 - Further processing of specific runs delayed until all nodes finish
 - Node down / drive failure
 - Further processing of concerned runs delayed until node is repaired


Ļ

Schematic Data Flow: LHCb

Transient Data Storage, "The Can"

- High-Capacity, High-Throughput file system
 - ~100PB, ~200GBps, 10⁹ files
- High number of clients: ~2000
- Few candidates on the market, retained:
 - Lustre (v2.6.32)
 - GPFS (v4.1.1)
 - CEPH/RADOS (Hammer)
 - EOS/CERN (tbd)

File Systems Considerations

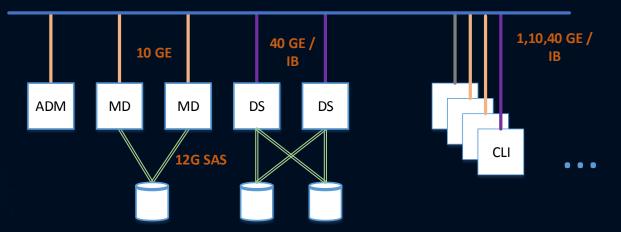
Lustre

- Clustered File system: data servers, meta-data server
- Beware of MDS bottlenecks, whole meta data should fit in memory to avoid disk i/o

• GPFS

- All i/o striped over all servers/LUNs
- Distributed meta data or separate MDS server possible

RADOS


- Object storage, "get"-"put"-"list" interface
- Underlying storage pools made for redundancy and zero data loss

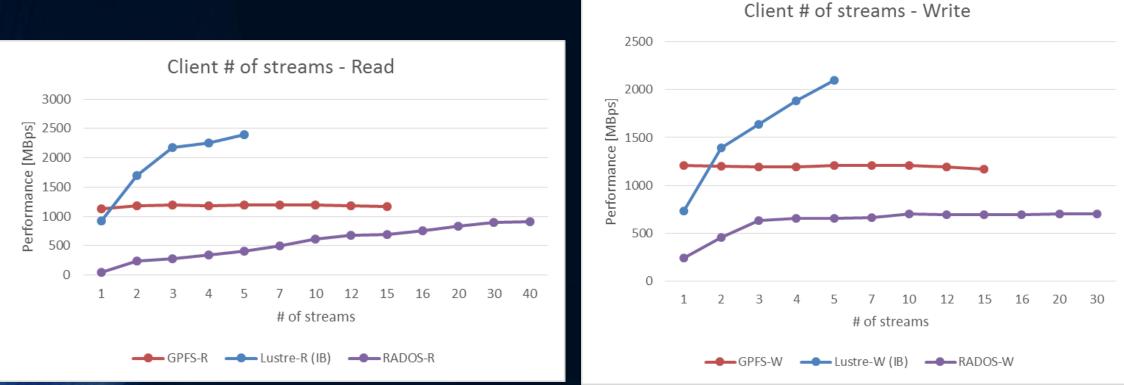
CEPH

POSIX file system interface on top of RADOS data stores

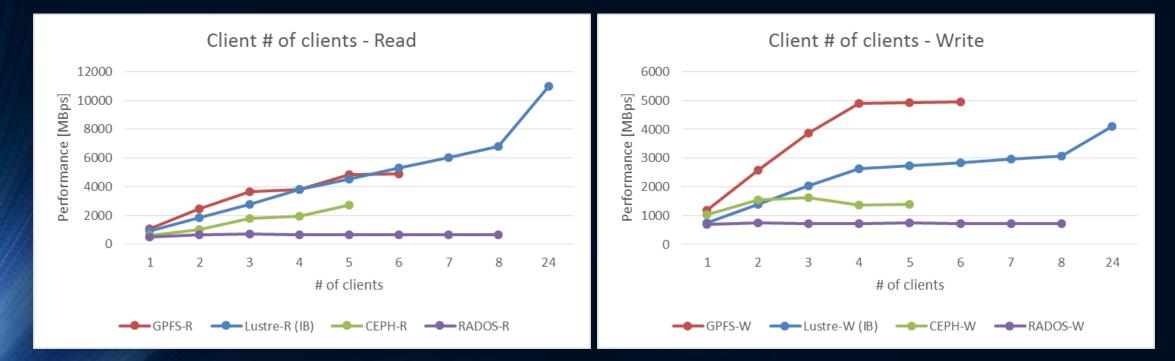
Storage Test, Setup

Test environment

- 6 LUNs, 500MBps ea, per storage chassis
 - MD3660 chassis with 30 disks 4TB
- Centos 7
- Infiniband FDR only tested for Lustre


Test Results, Linear Access

- Performance vs (Application) Block Size
 - 1 client on 10GE/IB
 - 1 stream


Test Results, Linear Access

- Performance vs # of streams
 - 1 client on 10GE/IB
 - x streams

Test Results, Linear Access

- Performance vs # of clients
 - x clients on 10GE/IB
 - 1 stream

Storage Solutions

- There are challenges
 - Capacity
 - Performance
 - Latency, access, metadata, ..
- There are solutions
 - Depending on today's biggest mystery: the data access pattern
 - .. And feature needs: Access policies, migration, remote replication, tiering, ...
- There are surprises (nice on the outside, ..)

Thank you.