Run 3 data centre infrastructure for ALICE and LHCb

Joint workshop on DAQ, 13 April 2016
Existing installation ALICE
- DAQ and HLT are located in counting rooms on top of the PX24 shaft.

Existing installation LHCb
- HLT farm and DAQ boards are located underground (barracks on protected side of the LHCb cavern).
- ~1700 HLT nodes, < 11 kW per rack.

Limitations
- Legacy environment from LEP times.
- Limited room for growth.
 - Cannot fit more than 40 – 50 racks in existing barracks/counting rooms.
 - In case of ALICE there is also a weight issue (suspended counting rooms).
- Cooling based on active rear-door heat exchangers running with mixed water (~ 14°C).
 - Not a “green” technology (chiller). Not easily scalable to power (density) needed for upgrade.
ALICE O²

- First-level processors host readout cards and perform local data volume reduction.
 - 8000 optical links from detector front-ends.
 - Total bandwidth ~ 10 Tbit/s (input).
 - Foreseen to stay in CR1 and use existing racks.

- Event-processing nodes reduce data volume by global reconstruction. All events go to storage.
 - Large installation. Requires a new room.

- Full system to be ready for start of Run 3.

<table>
<thead>
<tr>
<th>Component</th>
<th>IT Power [kVA]</th>
<th>Racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP</td>
<td>213</td>
<td>17</td>
</tr>
<tr>
<td>EPN, storage</td>
<td>1937</td>
<td>45</td>
</tr>
</tbody>
</table>
LHCb online upgrade

- Event-builder servers house PCIe40 readout cards.
 - \(~15000\) optical fibres from detector front-ends. Total bandwidth \(~40\,\text{Tbit/s}\).
 - Full system deployed from day 1 (commissioning during LS2).
- Event-filter CPU farm reduces data rate to storage to \(~100\,\text{kHz}\).
 - Foresee regular upgrades and extensions (don’t need full capacity from day 1).

<table>
<thead>
<tr>
<th>Component</th>
<th>Rack space [U]</th>
<th>IT Power [kVA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event-builder, ECS</td>
<td>1120</td>
<td>308</td>
</tr>
<tr>
<td>Event-filter (HLT)</td>
<td>2000</td>
<td>1400</td>
</tr>
<tr>
<td>Switches</td>
<td>544</td>
<td>109</td>
</tr>
</tbody>
</table>
Space and power requirements

- ALICE O² farm (without FLPs): about 2300 rack units and 2.1 MW power.
 - High power density due to heavy use of accelerators.
- LHCb upgrade farm (DAQ and HLT): about 3700 rack units and 2 MW power.
- No downtime during and high availability outside datataking.
 - 2N redundancy, dual feeds. Powered by same network as LHC machine.
 - Safe power (UPS, flywheel) would be nice to have but doesn’t seem affordable for 2 MW.

Location, location, location

- Most economical solutions (both for ALICE and LHCb) are new data centres at Point 2 and Point 8 (surface).
 - Allows short distances for high-speed connections.
 - Use existing services.
- In theory, remote hosting would also be possible (except for event-builder).
 - But significant overhead due to infrastructure for long-distance data transport.
- Traditional brick-and-mortar implementation probably not a realistic option.
Energy efficiency

- In line with CERN’s efforts to become more “green”, aim at

\[
\text{Power Usage Efficiency (PUE)} = \frac{\text{Total facility power}}{\text{IT power}} \sim 1.1 - 1.2.
\]

- Largely driven by cooling.

How to become “greener”?

- Free cooling: use outside air (or water).
- Operating servers at elevated inlet temperature helps (in general).
 - ASHRAE 2011 allowable range (class A1 equipment): 15 to 32°C.
- Optimise air flow.
- Cool closer to the source of heat.
- Don’t over-humidify/dehumidify.
- Use liquid cooling.
- Will discuss 2 1/2 cooling options in a bit more detail.
 - All compliant with target PUE.
Cooling solution 1: free (air) cooling

- Cooling without a compressor, using outdoor air (“opening the window”).
- Depending on environmental conditions, can achieve very low PUE.
 - In particular for direct free cooling (moving filtered outside air through the data centre).
 - Might even allow switching off server fans.
- During hot periods, use evaporative cooling or chiller.
- Geneva climate allows operation in free mode during most of the year.
- Well matched to containerised data centres.
Modular (containerised) data centres

- Careful design and optimisation of air flow.
- Site preparations limited to providing foundation, electricity and water (if needed).
- Lead time about three months to half a year.
- Scalable, “buy as you grow”. Could be reused later for a different project.
- Fire protection less critical than for buildings. Noise can be an issue though.
- Larger modules fit about 20 racks in a container. Typically high number of Us / m².
Modular (containerised) data centres

- Ongoing market survey to identify manufacturers able to provide containerised data centres of the required scale based on either free air or water cooling.

 https://cds.cern.ch/record/2141082
Cooling solution 2: rear-door heat exchangers

- Water from cooling towers available “for free” at experimental sites.
 - Requires implementing a secondary circuit.
 - Temperature subject to seasonal variations. Expect max. temperature in secondary circuit (i.e. at rack inlet) $\sim 27^\circ C$.

- Passive option: air is moved by server fans.
 - High reliability and low maintenance effort (no moving parts). No extra noise.
 - Equipment must provide good horizontal (front-to-back) air flow.

- Available cooling power depends on dimensions, flow rates, and temperatures.
 - For instance, with 800 mm \times 47 U racks, water at 27$^\circ$C ($\sim 3 \text{ m}^3/\text{h}$) could cool about 20 kW per rack while keeping room temperature at $< 35^\circ$C
 - In theory, could go up to ~ 40 kW (if using chilled water).

- Successfully implemented e.g. at GSI GreenCube and predecessors.

- Less demanding in terms of room layout. Compatible with container-based deployment and installation in a building.
 - For LHCb, installing the data centre in an existing assembly hall at Point 8 could be an option.
Cooling solution 2 1/2: liquid cooling

- Direct Liquid Cooling could be an interesting option.
 - Good match for warm (cooling-tower) water.
 - Needs complementary cooling to remove residual heat.
- Immersion cooling could be an option for HPC-like part of the farms.
 - Allows high power density and very low PUE. No noise.
 - Requires modified servers. Implications on connectivity and operation.