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Questions

• General approach:

• Which application / which part of reconstruction can benefit from GPU offload.

• How to parallelize?

– How to use the various GPU multiprocessors (cores)?

– What about all threads (vector-units) of one multiprocessor?

• Why to use GPU?

– Better latency

– GPUs can be very fast at a special task.

– E.g. for a trigger where latency matters.

– Better throughput

– We can usually just buy more computers – so throughput means events / seconds / CHF.

• How many GPUs per server, and do we need a client-server approach.

• Technical challenges?

• Don’t want to maintain multiple code bases.

– We will probably always need a CPU version as well, at least for reference.

– How to make sure, that the GPU result is correct?

– Can we expect the same results on CPU and GPU?
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Questions

• General approach:

• Which application / which part of reconstruction can benefit from GPU offload.

• How to parallelize?

– How to use the various GPU multiprocessors (cores)?

– What about all threads (vector-units) of one multiprocessor?

• Why to use GPU?

– Better latency

– GPUs can be very fast at a special task.

– E.g. for a trigger where latency matters.

– Better throughput

– We can usually just buy more computers – so throughput means events / seconds / CHF.

This is what we currently aim for!

• Technical challenges?

• Don’t want to maintain multiple code bases.

– We will probably always need a CPU version as well, at least for reference.

– How to make sure, that the GPU result is correct?

– Can we expect the same results on CPU and GPU?
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• 43.22%    Global Vertexer

• 1.11%    Luminous Region

• 6.8%    Beam-Gas QA

• 2.83%    PromptQA

• 34.4%    TPC Branch Merging

• 78%    TPC Cluster Transformation

• 81.98%    TPC Cluster Transformation (Calibrated)

• 97.22% + GPU TPC CA Tracker – Alternative: 20 CPU cores 

• 41.63%    TPC Track Merger and Track Fit

• 347.32%    TPC Huffman Compression

• 298.97%    TPC Calibration

• 1.3%    VZERO Reconstruction

• 1.07%    ZDC Reconstruction

• 183.29%    Global ESD Converter

• 145.58%    FLAT-ESD Converter

• FPGA (CRORC)     TPC Cluster Finder

5

• 0.67%    EMCAL Digit Maker

• 43.53%    EMCAL Raw Analyzer

• 0.59%    EMCAL Stu Analyzer

• 44.69%    EMCAL Tru Analyzer

• 0.45%    EMCAL Trigger Data Maker

• 1.55%    EMCAL Trigger Maker

• 62.29%    EMCAL QA

• 0.56%    CTP RE Trigger

• 1.8%    Global Trigger

• 5.85%    ITS SDD Cluster Finder

• 2.06%    ITS SPD Cluster Finder

• 5.02%    ITS SSD Cluster Finder

• 19.64%    ITS SPD Standalone Tracker

• 10.68%    ITS SPD Vertexer

• 118.18%    ITS-TPC Tracker

The compute hotspot is TPC tracking – best suited for GPU offload in ALICE – This is more difficult for other experiments.

CPU Utilization – 100% ~ 1 CPU core – Reconstruction of PbPb data at 800 Hz

ALICE HLT Components
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• TPC Volume is split in 36 sectors.

 The tracker processes each sector individually.

 Increases data locality, reduce network bandwidth, but reduces parallelism.

 Each sector has 160 read out rows in radial direction.

• 1. Phase: Sektor-Tracking (within a sector)

 Heuristic, combinatorial search for track seeds using a

Cellular Automaton.

A) Looks for three hots composing a straight line (link).

B) Concatenates links.

 Fit of track parameters, extrapolation of track, and search for additional

clusters using the Kalman Filter.

• 2. Phase: Track-Merger

 Combines the track segments found in the individual sectors.

Tracking Algorithm
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Tracking split in 4 main (abstract) steps.

• Each step is internally split in technical substeps.

• Phase 1 (Steps 1 and 2) on GPU, Phase 2 (Steps 3 and 4) and CPU!

# Task How Locality Description Time Device

1 Seeding Cellular 

Automaton

Very Local (hit

and adjacent 

hits)

Find short track candidates of 3 to about 10 

clusters.

Ca 30% GPU

or CPU

2 Track 

following

Kalman Filter 

(simplified)

Sector-local Fit parameters to candidate, find full track 

segment in one sector via track following with 

simplified Kalman filter (e.g. constant B-field, 

y and x uncorrelated, …)

Ca 60%

3 Track 

Merging

Combinatorics / 

Mathematics

Global Merge track segments within a sector and 

between sectors

Ca 2% CPU only

4 Track Fit Kalman Filter 

(full)

Global Full track fit with full Kalman filter (polynomial

approximation of B-field)

Ca 8% CPU

(GPU 

possible)

Structure of HLT TPC Tracking
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Parallel Track Construction

Current Row

Tracks are independent and can be processed simultaneously.

Clusters can be assigned to multiple tracks, this is solved later.

• Parallelization scheme suited

for threads inside the

multiprocessor.

• Today, different multi-

processors can execute

different programs.

• When ALICE GPU tracking

was developed, this was

not possible.

 Currently, we use the same

scheme for parralelize

over multiprocessors.

• Only works, if there are many

tracks / clusters.

• OK for PbPb with TPC.

GPU Tracking
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• CPU and GPU tracker (in CUDA and OpenCL) share common source files.

• Specialist wrappers for CPU and GPU exist, that include these common files.

 Same source code for CPU and GPU version

 The macros are used for API-specific keywords only.

 The fraction of common source code is above 90%.

common.cpp:

__DECL FitTrack(int n) {

….

}

cpu_wrapper.cpp:

#define __DECL void

#include ``common.cpp``

void FitTracks() {

for (int i = 0;i < nTr;i++) {

FitTrack(n);

}

}

cuda_wrapper.cpp and opencl_wrapper:

#define __DECL __device void

#include ``common.cpp``

__global void FitTracksGPU() {

FitTrack(threadIdx.x);

}

void FitTracks() {

FitTracksGPU<<<nTr>>>();

}

Common tracker source code
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• The first runs showed some inconsistencies in cluster to track assignment 

statistics, but not in physical observables. Three causes were identified:

• Cluster to track assignment

• Track Merger

• Non-associative floating point arithmetic

Consistency of Tracking Results
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• Cluster to track assignment

• Problem: Cluster to track assignment was depending on the order of the 

tracks.

– Each cluster was assigned to the longest possible track. Out of two 

tracks of the same length, the first one was chosen.

– Concurrent GPU tracking processes the tracks in an undefined order.

• Solution: Both the chi² and the track length are used as criteria. It is 

extremely unlikely that two tracks coincide in both values.

• Similar problem in track merger, which depended on track order.

Consistency of Tracking Results
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• Non associative floating point arithmetic

• Problem: Different compilers perform the arithmetic in different order (also on 

the CPU).

• Solution: Cannot be fixed, but...

– Slight variations during the extrapolations do not matter as long as the 

clusters stay the same.

– Inconsistent clusters: 0,00024%

• Now, perfect match of CPU and GPU results in plots…

• …But not binarily.

Consistency of Tracking Results
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• Separation of event in sectors enables the use of a pipeline Pipeline:

 Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

• ALICE processes one event at a time (approach for old GPUs) – and one GPU kernel at a time!

• No client-server mode, 1 GPU per compute node.

• Very good GPU utilization for large events: >= 95%.

• Today, we can overlap multiple events (see later), i.e. run different programs on different multiprocessors.

• Even within one event, we can overlap kernels to exploit parallelism better.

Optimizations (Performance)
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• Separation of event in sectors enables the use of a pipeline Pipeline:

 Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

• Problem: tracks are differently long. Through dynamic scheduling, GPU can be 

fully used.

• Black   : Idle

• Blue    : Track Fit

• Green : Track Extrapolation

No dnymic scheduling With dynamic scheduling

Optimizations (Performance)
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GPU performance 

independent from CPU.

Tracking times scales linearly 

with input data size.

Approx. 150 times faster than offline tracking.

Results
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Maximum processing rates

• Maximum TPC readout bandwidth: ~ 50 GB/s.

• Corresponds to about 1 kHz event rate for PbPb at maximum Luminosity.

• HLT TPC tracking as able to process this data / event rate.

• The situation becomes more complicated for smaller events:

• 4 kHz at 12,5 MB / event is more challenging than 1 kHz at 50 MB / event.

• With out current parallelization scheme (single event at a time), smaller events lead to worse GPU utilization.

• The TPC readout frequency is limited by the architecture.

• HLT TPC tracking still works at the maximum possible frequency.

• Performance of HLT TPC tracking sufficient for any possible data taking during Run2.

• We still try to improve for Run 3, and test this for Run 2.
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• HLT Tracking 15 times faster than offline tracking.

• With GPU additional speedup of 10 compared to CPU  Total speedup 150.

• GPU and CPU results consistent and reproducible.

• GPU Tracker runs on CUDA, OpenCL, OpenMP – one common shared source code.

• Now: 180 compute nodes with GPUs in the HLT

• First deployment: 2010 – 64 GPUs in LHC Run 1.

• Since 2012 in 24/7 operation, no problems yet.

• Cost savings compared to an approach with traditional CPUs:

• About 500.000 US dollar during ALICE Run I.

• Above 1.000.000 US dollar during Run II.

• Mandatory for future experiments, e.g.. CBM (FAIR, GSI) with >1TB/s data rate.

Summary (current ALICE Tracking)
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Possible Future Improvements

• Move more reconstruction steps onto the GPU.

• This will perhaps not decrease time to solution, but reduce CPU usage.

• Alice TPC is operated at 500 Hz to few kHz during Run 2.

• Current GPU tracking is fully sufficient for all data the TPC can deliver in Run 2.

• Situation changes in Run 3:

• Target interaction rate is 50 kHz.

• Number of GPU will not increase by 25x.

– We should process multiple events on the GPU concurrently.

– Better exploition of event-base parallelism.
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Concurrent event processing

• GPU Memory usage of TPC tracking is below 1 GB.

• GPUs in ALICE HLT have 6 GB.

• We can run multiple instances of the GPU tracker on multiple events in parallel (without further tuning).

• GPU parallelization also over events, on top of tracks / clusters.

• Tracking time of 1 instance: 145 ms (Full central PbPb).

• Tracking time of 2 instances: 220 ms (110 ms / event).

• Speedup because of better GPU resource usage. Even a full central PbPb event can no longer utilize all ALUs of 

modern GPUs (this was different some years ago when we started to use GPUs in the HLT).

 The speedup is much larger for smaller events.

• With this approach, the HLT can already process around 40.000.000 tracks / second (compute-wise).

• At very high rates, processing / sending all events individually might be inefficient.

• E.g. ALICE HLT framework is designed to operate at up to 6 kHz

• It is better to combine multiple events, and process them jointly.

• ALICE will inherently do this, due to time frames in continuous read out.
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• If we bring more tasks to the GPU,

we should avoid GPU/Host copies.

• All intermediate steps must run

on GPU. (Running only the track

fit produces infeasible overhead.

• We have to evaluate whoch (consecutive) components can use GPU efficiently.

• The entire tracking chain seems a good candidate.
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For Run 3, we want to merge

transformation and Tracking.

Current HLT TPC / ITS Tracking
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• All intermediate shared buffers

on GPU.

• We keep the current component

structure, and we create a

super-component that runs

everything at once on GPU.
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Next developments in tracking
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• TRD prolongation could run in parallel to ITS prolongation, final track fit afterward.

• We could add dE/dx to final track fit
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ATLAS Trigger GPU Prototypes    
 GPU prototypes developed to quantity benefits of GPGPU for ATLAS Trigger:

1) ID prototype: Complete Inner Detector (ID) trigger chain implemented; measurements  made on C2050

2) Extended prototype: ID & Muon Tracking, Calorimeter clustering – measurements on K80

 Goal is to assess the potential benefit in terms of event though-put per unit cost.

 ID Prototype comprises:

 Data Preparation: Bytestream decoding, Clustering, Space-Point formation

 Tracking: Seed-making, track extension, clone removal

 Average factor 12 speedup for whole tracking chain on C2050 GPU c.f. 1 E5620 CPU core

 Speed-up greater for some algorithms:  Factor 26 for data preparation 

D Emeliyanov and J Howard 2012 J. Phys.: Conf. Ser. 396 012018
1

Nvidia C2050 GPU

Intel E5620 CPU 2.4 GHz  x2.4

x5

ATL-DAQ-SLIDE-2014-635

http://iopscience.iop.org/article/10.1088/1742-6596/396/1/012018
http://cds.cern.ch/record/1754968


ATLAS Offloading Mechanism 
 A client-server approach is 

implemented to manage 

resources between multiple PU 

processes.

 PU prepares data to be processed 

and sends it to server

 Accelerator Process Extension 

(APE) Server manages offload 

requests and executes kernels on 

GPU(s)

 It sends results back to process 

that made the offload request

Trigger PU

(ATHENA)

APE

Server

Data+Metadata

Results+Metadata

Trigger PU

(ATHENA)
Trigger PU

(ATHENA)
Trigger PU

(ATHENA)

Server can support different hardware 

types (GPUs, Xeon-Phi, CPUs)  and 

different configurations such as GPU/Phi 

mixtures and in-host off-host accelerators.

2



ATLAS Extended GPU prototype

3

• Extended prototype comprising:
• Inner Detector Tracking

• Calorimeter Topological Clustering

• Muon Tracking : Based on Hough 

Transform

Calorimeter Topological Clustering

• Initial measurements:
• Comparison of GPU and CPU algos:

• Reconstructed quantities e.g. no. Calo clusters =>

• Execution times e.g. Track Seeding algorithm time =>

• Throughput: events/s:

• Initial results suggest factor of two increase in 

system throughput could be obtained by adding 

GPU 

• To be confirmed with ongoing measurements



CMS – GPU Implementation 
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Socket client-server tranmission 
Scheduler First-Come First-Served, 

gathers multiple events and ships 
them for concurrent processing 

Some goodies 
• Algorithm exceptions propagated to 

callers 
• Centralized profiling, logging 
• File input / output configurable 
• Outside framework execution possible 

 

LHCb – GPU Manager Offload Tool 
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