
14.04.2016

ALICE R&D with GPUs

Dr. David Rohr, drohr@cern.ch

ALICE, High Level Trigger

Frankfurt Institute for Advanced Studies

Second Joint Workshop on DAQ@LHC, 14.4.2016

mailto:drohr@cern.ch

114.04.2016

Questions

• General approach:

• Which application / which part of reconstruction can benefit from GPU offload.

• How to parallelize?

– How to use the various GPU multiprocessors (cores)?

– What about all threads (vector-units) of one multiprocessor?

• Why to use GPU?

– Better latency

– GPUs can be very fast at a special task.

– E.g. for a trigger where latency matters.

– Better throughput

– We can usually just buy more computers – so throughput means events / seconds / CHF.

• How many GPUs per server, and do we need a client-server approach.

• Technical challenges?

• Don’t want to maintain multiple code bases.

– We will probably always need a CPU version as well, at least for reference.

– How to make sure, that the GPU result is correct?

– Can we expect the same results on CPU and GPU?

214.04.2016

Questions

• General approach:

• Which application / which part of reconstruction can benefit from GPU offload.

• How to parallelize?

– How to use the various GPU multiprocessors (cores)?

– What about all threads (vector-units) of one multiprocessor?

• Why to use GPU?

– Better latency

– GPUs can be very fast at a special task.

– E.g. for a trigger where latency matters.

– Better throughput

– We can usually just buy more computers – so throughput means events / seconds / CHF.

This is what we currently aim for!

• Technical challenges?

• Don’t want to maintain multiple code bases.

– We will probably always need a CPU version as well, at least for reference.

– How to make sure, that the GPU result is correct?

– Can we expect the same results on CPU and GPU?

14.04.2016

414.04.2016

TPC

Link 1

TPC
Link 216

TPC Clus-

ter Finder

ITS

Links

.

.

ZDC Re-

construction

Output

Link 1

Output

Link 28

Event

Building

Calibration

Sensor

Data

TPC Branch

Merging

TPC Trans-

formation
(2 Instances)

Input

FPGA CRORC
(66 FEP Nodes)

ZDC

Links

VZERO

Links

EMCAL

Links

DIM from ECS

TPC GPU

TRACK

FINDING

TPC Merger

& Track Fit

TPC / ITS

Tracking

ITS standa-

lone tracking

ESD

Flat

ESD

VZERO Re-

construction

EMCAL Re-

construction

.

.

QA

Output

(ZMQ)

Luminous

Region

Prompt

QA
EMCAL

QA

TPC Clus-

ter Finder

180 Compute Nodes – 180 Instances of Reconstruction Chain

Calibration

Merger
Calib

Output

TPC Offline

Preprocessor

Transformation

Preparation

ZeroMQ QA

Output

ZeroMQ Feedback Loop

Output
(8 HLTout Nodes)

Calibration Node

TPC

Compression

Global

Trigger

Other
Detector

QA

Output
(HOMER)

Moni-

toring

Side

Chain

Default OCDB Calibration

Pass

Through

…Future Components

To DQM

To FXS

1 Monitor Node

TriggersTriggersTriggers

ITS SPD

Vertexer

Global

Vertexer
ITS Clusterer

Asynchronous Failure-

Resilient Components

Transient Failure-

Resilient Subscription

ZMQ QA

Config

Overview of current HLT components

514.04.2016

• 43.22% Global Vertexer

• 1.11% Luminous Region

• 6.8% Beam-Gas QA

• 2.83% PromptQA

• 34.4% TPC Branch Merging

• 78% TPC Cluster Transformation

• 81.98% TPC Cluster Transformation (Calibrated)

• 97.22% + GPU TPC CA Tracker – Alternative: 20 CPU cores

• 41.63% TPC Track Merger and Track Fit

• 347.32% TPC Huffman Compression

• 298.97% TPC Calibration

• 1.3% VZERO Reconstruction

• 1.07% ZDC Reconstruction

• 183.29% Global ESD Converter

• 145.58% FLAT-ESD Converter

• FPGA (CRORC) TPC Cluster Finder

5

• 0.67% EMCAL Digit Maker

• 43.53% EMCAL Raw Analyzer

• 0.59% EMCAL Stu Analyzer

• 44.69% EMCAL Tru Analyzer

• 0.45% EMCAL Trigger Data Maker

• 1.55% EMCAL Trigger Maker

• 62.29% EMCAL QA

• 0.56% CTP RE Trigger

• 1.8% Global Trigger

• 5.85% ITS SDD Cluster Finder

• 2.06% ITS SPD Cluster Finder

• 5.02% ITS SSD Cluster Finder

• 19.64% ITS SPD Standalone Tracker

• 10.68% ITS SPD Vertexer

• 118.18% ITS-TPC Tracker

The compute hotspot is TPC tracking – best suited for GPU offload in ALICE – This is more difficult for other experiments.

CPU Utilization – 100% ~ 1 CPU core – Reconstruction of PbPb data at 800 Hz

ALICE HLT Components

14.04.2016

714.04.2016

• TPC Volume is split in 36 sectors.

 The tracker processes each sector individually.

 Increases data locality, reduce network bandwidth, but reduces parallelism.

 Each sector has 160 read out rows in radial direction.

• 1. Phase: Sektor-Tracking (within a sector)

 Heuristic, combinatorial search for track seeds using a

Cellular Automaton.

A) Looks for three hots composing a straight line (link).

B) Concatenates links.

 Fit of track parameters, extrapolation of track, and search for additional

clusters using the Kalman Filter.

• 2. Phase: Track-Merger

 Combines the track segments found in the individual sectors.

Tracking Algorithm

814.04.2016

Tracking split in 4 main (abstract) steps.

• Each step is internally split in technical substeps.

• Phase 1 (Steps 1 and 2) on GPU, Phase 2 (Steps 3 and 4) and CPU!

Task How Locality Description Time Device

1 Seeding Cellular

Automaton

Very Local (hit

and adjacent

hits)

Find short track candidates of 3 to about 10

clusters.

Ca 30% GPU

or CPU

2 Track

following

Kalman Filter

(simplified)

Sector-local Fit parameters to candidate, find full track

segment in one sector via track following with

simplified Kalman filter (e.g. constant B-field,

y and x uncorrelated, …)

Ca 60%

3 Track

Merging

Combinatorics /

Mathematics

Global Merge track segments within a sector and

between sectors

Ca 2% CPU only

4 Track Fit Kalman Filter

(full)

Global Full track fit with full Kalman filter (polynomial

approximation of B-field)

Ca 8% CPU

(GPU

possible)

Structure of HLT TPC Tracking

914.04.2016

Parallel Track Construction

Current Row

Tracks are independent and can be processed simultaneously.

Clusters can be assigned to multiple tracks, this is solved later.

• Parallelization scheme suited

for threads inside the

multiprocessor.

• Today, different multi-

processors can execute

different programs.

• When ALICE GPU tracking

was developed, this was

not possible.

 Currently, we use the same

scheme for parralelize

over multiprocessors.

• Only works, if there are many

tracks / clusters.

• OK for PbPb with TPC.

GPU Tracking

14.04.2016

1114.04.2016

• CPU and GPU tracker (in CUDA and OpenCL) share common source files.

• Specialist wrappers for CPU and GPU exist, that include these common files.

 Same source code for CPU and GPU version

 The macros are used for API-specific keywords only.

 The fraction of common source code is above 90%.

common.cpp:

__DECL FitTrack(int n) {

….

}

cpu_wrapper.cpp:

#define __DECL void

#include ``common.cpp``

void FitTracks() {

for (int i = 0;i < nTr;i++) {

FitTrack(n);

}

}

cuda_wrapper.cpp and opencl_wrapper:

#define __DECL __device void

#include ``common.cpp``

__global void FitTracksGPU() {

FitTrack(threadIdx.x);

}

void FitTracks() {

FitTracksGPU<<<nTr>>>();

}

Common tracker source code

1214.04.2016

• The first runs showed some inconsistencies in cluster to track assignment

statistics, but not in physical observables. Three causes were identified:

• Cluster to track assignment

• Track Merger

• Non-associative floating point arithmetic

Consistency of Tracking Results

1314.04.2016

• Cluster to track assignment

• Problem: Cluster to track assignment was depending on the order of the

tracks.

– Each cluster was assigned to the longest possible track. Out of two

tracks of the same length, the first one was chosen.

– Concurrent GPU tracking processes the tracks in an undefined order.

• Solution: Both the chi² and the track length are used as criteria. It is

extremely unlikely that two tracks coincide in both values.

• Similar problem in track merger, which depended on track order.

Consistency of Tracking Results

1414.04.2016

• Non associative floating point arithmetic

• Problem: Different compilers perform the arithmetic in different order (also on

the CPU).

• Solution: Cannot be fixed, but...

– Slight variations during the extrapolations do not matter as long as the

clusters stay the same.

– Inconsistent clusters: 0,00024%

• Now, perfect match of CPU and GPU results in plots…

• …But not binarily.

Consistency of Tracking Results

14.04.2016

1614.04.2016

• Separation of event in sectors enables the use of a pipeline Pipeline:

 Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

• ALICE processes one event at a time (approach for old GPUs) – and one GPU kernel at a time!

• No client-server mode, 1 GPU per compute node.

• Very good GPU utilization for large events: >= 95%.

• Today, we can overlap multiple events (see later), i.e. run different programs on different multiprocessors.

• Even within one event, we can overlap kernels to exploit parallelism better.

Optimizations (Performance)

1714.04.2016

• Separation of event in sectors enables the use of a pipeline Pipeline:

 Tracking on GPU, pre-/postprocessing on CPU, and data transfer run in parallel.

• Problem: tracks are differently long. Through dynamic scheduling, GPU can be

fully used.

• Black : Idle

• Blue : Track Fit

• Green : Track Extrapolation

No dnymic scheduling With dynamic scheduling

Optimizations (Performance)

1814.04.2016

GPU performance

independent from CPU.

Tracking times scales linearly

with input data size.

Approx. 150 times faster than offline tracking.

Results

1914.04.2016

Maximum processing rates

• Maximum TPC readout bandwidth: ~ 50 GB/s.

• Corresponds to about 1 kHz event rate for PbPb at maximum Luminosity.

• HLT TPC tracking as able to process this data / event rate.

• The situation becomes more complicated for smaller events:

• 4 kHz at 12,5 MB / event is more challenging than 1 kHz at 50 MB / event.

• With out current parallelization scheme (single event at a time), smaller events lead to worse GPU utilization.

• The TPC readout frequency is limited by the architecture.

• HLT TPC tracking still works at the maximum possible frequency.

• Performance of HLT TPC tracking sufficient for any possible data taking during Run2.

• We still try to improve for Run 3, and test this for Run 2.

2014.04.2016

• HLT Tracking 15 times faster than offline tracking.

• With GPU additional speedup of 10 compared to CPU  Total speedup 150.

• GPU and CPU results consistent and reproducible.

• GPU Tracker runs on CUDA, OpenCL, OpenMP – one common shared source code.

• Now: 180 compute nodes with GPUs in the HLT

• First deployment: 2010 – 64 GPUs in LHC Run 1.

• Since 2012 in 24/7 operation, no problems yet.

• Cost savings compared to an approach with traditional CPUs:

• About 500.000 US dollar during ALICE Run I.

• Above 1.000.000 US dollar during Run II.

• Mandatory for future experiments, e.g.. CBM (FAIR, GSI) with >1TB/s data rate.

Summary (current ALICE Tracking)

14.04.2016

2214.04.2016

Possible Future Improvements

• Move more reconstruction steps onto the GPU.

• This will perhaps not decrease time to solution, but reduce CPU usage.

• Alice TPC is operated at 500 Hz to few kHz during Run 2.

• Current GPU tracking is fully sufficient for all data the TPC can deliver in Run 2.

• Situation changes in Run 3:

• Target interaction rate is 50 kHz.

• Number of GPU will not increase by 25x.

– We should process multiple events on the GPU concurrently.

– Better exploition of event-base parallelism.

2314.04.2016

Concurrent event processing

• GPU Memory usage of TPC tracking is below 1 GB.

• GPUs in ALICE HLT have 6 GB.

• We can run multiple instances of the GPU tracker on multiple events in parallel (without further tuning).

• GPU parallelization also over events, on top of tracks / clusters.

• Tracking time of 1 instance: 145 ms (Full central PbPb).

• Tracking time of 2 instances: 220 ms (110 ms / event).

• Speedup because of better GPU resource usage. Even a full central PbPb event can no longer utilize all ALUs of

modern GPUs (this was different some years ago when we started to use GPUs in the HLT).

 The speedup is much larger for smaller events.

• With this approach, the HLT can already process around 40.000.000 tracks / second (compute-wise).

• At very high rates, processing / sending all events individually might be inefficient.

• E.g. ALICE HLT framework is designed to operate at up to 6 kHz

• It is better to combine multiple events, and process them jointly.

• ALICE will inherently do this, due to time frames in continuous read out.

2414.04.2016

• If we bring more tasks to the GPU,

we should avoid GPU/Host copies.

• All intermediate steps must run

on GPU. (Running only the track

fit produces infeasible overhead.

• We have to evaluate whoch (consecutive) components can use GPU efficiently.

• The entire tracking chain seems a good candidate.

TPC Cluster

Transformation

TPC Global

Merger

In-Sector

Merging

Between-Sector

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track

Finder

CA Track

Seeding

Kalman Track

Following

GPU Buffer Management

GPU

Tracker

Buffer

Fit

Buffer

Shared

Buffer

TPC/ITS Tracker Component

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

Input

Output

For Run 3, we want to merge

transformation and Tracking.

Current HLT TPC / ITS Tracking

2514.04.2016

• All intermediate shared buffers

on GPU.

• We keep the current component

structure, and we create a

super-component that runs

everything at once on GPU.

TPC Cluster

Transformation

TPC Global

Merger

In-Sector

Merging

Between-Sector

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track

Finder

CA Track

Seeding

Kalman Track

Following

GPU Buffer Management

GPU

Shared

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

Input

Output

Shared

Buffer

Shared

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

P
o

s
tp

o
n

e
 T

ra
c
k
 fit

a
fte

r IT
S

 p
ro

p
a

g
a

tio
n

Next developments in tracking

2614.04.2016

• TRD prolongation could run in parallel to ITS prolongation, final track fit afterward.

• We could add dE/dx to final track fit

TPC Cluster

Transformation

TPC Global

Merger

In-Sector

Merging

Between-Sector

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track

Finder

CA Track

Seeding

Kalman Track

Following

GPU Buffer Management

Shared

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

TPC / TRD

Matching

TPC/TRD Tracker Component

Shared

Buffer

Shared

Buffer
Final TPC / TRD / ITS Track Fit & dE/dx

Shared

Buffer

Output
Shared

Buffer

Input

Next developments in tracking

14.04.2016

ATLAS Trigger GPU Prototypes
 GPU prototypes developed to quantity benefits of GPGPU for ATLAS Trigger:

1) ID prototype: Complete Inner Detector (ID) trigger chain implemented; measurements made on C2050

2) Extended prototype: ID & Muon Tracking, Calorimeter clustering – measurements on K80

 Goal is to assess the potential benefit in terms of event though-put per unit cost.

 ID Prototype comprises:

 Data Preparation: Bytestream decoding, Clustering, Space-Point formation

 Tracking: Seed-making, track extension, clone removal

 Average factor 12 speedup for whole tracking chain on C2050 GPU c.f. 1 E5620 CPU core

 Speed-up greater for some algorithms: Factor 26 for data preparation

D Emeliyanov and J Howard 2012 J. Phys.: Conf. Ser. 396 012018
1

Nvidia C2050 GPU

Intel E5620 CPU 2.4 GHz x2.4

x5

ATL-DAQ-SLIDE-2014-635

http://iopscience.iop.org/article/10.1088/1742-6596/396/1/012018
http://cds.cern.ch/record/1754968

ATLAS Offloading Mechanism
 A client-server approach is

implemented to manage

resources between multiple PU

processes.

 PU prepares data to be processed

and sends it to server

 Accelerator Process Extension

(APE) Server manages offload

requests and executes kernels on

GPU(s)

 It sends results back to process

that made the offload request

Trigger PU

(ATHENA)

APE

Server

Data+Metadata

Results+Metadata

Trigger PU

(ATHENA)
Trigger PU

(ATHENA)
Trigger PU

(ATHENA)

Server can support different hardware

types (GPUs, Xeon-Phi, CPUs) and

different configurations such as GPU/Phi

mixtures and in-host off-host accelerators.

2

ATLAS Extended GPU prototype

3

• Extended prototype comprising:
• Inner Detector Tracking

• Calorimeter Topological Clustering

• Muon Tracking : Based on Hough

Transform

Calorimeter Topological Clustering

• Initial measurements:
• Comparison of GPU and CPU algos:

• Reconstructed quantities e.g. no. Calo clusters =>

• Execution times e.g. Track Seeding algorithm time =>

• Throughput: events/s:

• Initial results suggest factor of two increase in

system throughput could be obtained by adding

GPU

• To be confirmed with ongoing measurements

CMS – GPU Implementation

41 12.01.2016

Socket client-server tranmission
Scheduler First-Come First-Served,

gathers multiple events and ships
them for concurrent processing

Some goodies
• Algorithm exceptions propagated to

callers
• Centralized profiling, logging
• File input / output configurable
• Outside framework execution possible

LHCb – GPU Manager Offload Tool

14.04.2016

