

The ALICE Common Read-Out Receiver Card (C-RORC)

Heiko Engel (IRI, Frankfurt University)

ALICE, ATLAS, CMS & LHCb Second Joint Workshop on DAQ@LHC 12.04.2016

ALICE Run 1 Read-Out Architecture

Run1

 ~500 optical links from detectors

Data Acquisition:

- ~2500 CPU Cores
- ~400 D-RORCs

High-Level Trigger

- ~2500 CPU cores
- 240 H-RORCs
- 64 GPUs

Orange boxes: <u>custom FPGA boards:</u>
D-RORC: DAQ Read-Out Receiver Card
H-RORC: HLT Read-Out Receiver Card

ALICE Run1 Read-Out Receiver Cards

ALICE Data Acquisition: D-RORCs

ALICE High-Level Trigger: H-RORCs

Read-Out Receiver Card for Run 2

- Main requirements
 - PCI-Express
 - 12 optical links
 - support for higher link speeds
 - failsafe FPGA configuration
 - DAQ: LVDS
 - HLT: onboard memory & data preprocessing capabilities

- Timeline
 - project kickoff mid 2010
 - schematics done mid 2011
 - First prototypes end 2012

C-RORC Hardware Overview

C-RORC Hardware Overview

 PCIe throughput close to physical limit

 DDR3 at 1066 / 800 / 606 Mbps

[MB/s]	DDR3-1066	DDR3-800	DDR3-606
Seq. read	8140	5940	4620
Seq. write	7320	5420	3300

 Configuration control via PCIe sideband

ATLAS TDAQ in Run2

C-RORC Hardware Production

- Common production
 - Approx. 400 boards
- Common hardware test suite
 - Firmware
 - Software
 - Peripherals
- Installation into production systems Aug. 2014

- Timeline
 - Market Survey / Call for TenderQ1-2/2013
 - Contract mid 2013
 - Pre-series production early 2014
 - Series production done mid 2014

C-RORC Applications

Common hardware platform - independent firmware projects

ALICE Data Acquisition
ALICE High-Level Trigger
ATLAS TDAQ Read-Out System
ATLAS TDAQ Rol Builder
ALICE Run 3 Read-Out Prototype

ALICE Data Acquisition Firmware

- Data Acquisition and Detector Configuration/Control protocols
 - DATA TAKING
 - RX channel used to download events from the detector electronics to the DAQ farm
 - TX channel used for flow control to avoid data overflow.
 - DETECTOR configuration:
 - TX channel used to send configuration data to the front end electronics
 - RX channel used to receive acknowledgement
- Replace TPC, TRD and HLT-to-DAQ D-RORCs
- Optical Links: Detector Data Link (DDL) Protocol,
 - Gen1 at 2.125 Gbps
 - Gen2 at: 3.125 / 4.0 / 5.3125 Gbps
 - Linkrate configurable at runtime
- DMA: Device to Host
 - Physmem buffer handling
 - PLDA DMA engine, 6 data channels for data taking and for detector configuration

ALICE DAQ Run2 Setup

130 Nodes / ~2900 cores 60 C-RORCs 235 D-RORCs 10G Ethernet Interconnect

From Filippo Costa, ALICE DAQ

ALICE High-Level Trigger: Firmware

- Replacing all previous HLT boards
- Up to 12 links / board:
 - Data input from DAQ: DMA-to-Host, DDL at 2.125 / 3.125 / 4 Gbps
 - Data output to DAQ: DMA-to-Device, DDL at 5.3125 Gbps
- FPGA-based data pre-processing: cluster finding on TPC raw data
- Custom DMA engine for scatter-gather DMA
- DDR3 for DataReplay

ALICE HLT Run2 Setup

180 Nodes / ~4300 cores 180 GPUs 74 C-RORCs Infiniband FDRx4 (56 Gbps)

ATLAS ROS/RolB Architecture

- **ROS / ROI-Builder**
 - Same firmware and host PC
 - ROS: 12 optical links / board
 - RoIB: 10 optical links / board
 - separate control & fragment building software for ROS and RoIB

ATLAS ROS Run2 Setup:

- 98 ROS PCs
- 1860 ROLs
- 178 C-RORCs
- 392 10GbE links

From ATLAS ROS Team

ATLAS RobinNP Firmware and Software

- C-RORC as RobinNP (No Processor)
 - based upon Robin firmware, but offload tasks to the host CPU
 - PLDA DMA engine
- Key innovations at the boundary between the RobinNP and the host

From ATLAS ROS Team

C-RORC as Prototype for Run 3

- Run 3 hardware not available yet
- C-RORC can readout GBT link speed
- Prototype system with GBT connected to existing read-out chain

From Filippo Costa, ALICE DAQ

Summary

- Common read-out hardware for ALICE & ATLAS
- Increased link density, up-to-date interfaces
- Installed in production systems since mid. 2014
- Four applications in Run 2
 - Separate firmware projects, but with shared code
- ALICE prototyping platform for Run 3

