
The Evolution of the ATLAS Data
Flow system for Run 2

Reiner Hauser
Michigan State University

2

Outline

● Reminder: The ATLAS DAQ/HLT system in Run 1

● Reasons for Evolving the Data Flow Architecture

● Evolution of Components and their Interactions

● New Data Flow Core for merged HLT

● HLT Supervisor
● Data Collection Manager
● HLT Processing Unit

● Network

● Upgrades and evolution of existing components

● Readout System
● Region of Interest Builder
● Data Logger

3

Reminder: The ATLAS Trigger/DAQ Architecture in Run 1

Design
2010
2012

4

Key Aspects of Run 1 Architecture

● Level 1 trigger forwards Regions of Interest (RoI) to Level 2
supervisor via the hardware based RoIBuilder.

● 8 input links @ 75 kHz in Run 1 (→ 100 kHz in Run 2)

● Region of Interest based Level 2 trigger system

● Requests data from readout system as needed

● Explicit event building step after Level 2 accepts event by
dedicated machines.

● “Off-line” style processing of full event in Event Filter (EF)

● Accepted Events are send to data logger (SFO)

5

Why change things ?

● Two distinct networks for Level 2 and EF, but same technology in
practice

● Origin: Can one network technology handle both types of traffic ?

● A subset of HLT nodes was connected to both switches in such a
way that they could be moved from one to the other by a
configuration change → required a stop of the on-going run.

● Flexible common communication library for all data exchange
except for last step (EF to data logger) which used a different
protocol for historical reasons → streamline software.

● Originally to support a variety of possible transport mechanisms or
technologies – in the end only TCP and UDP for multicast were
used.

6

Why Change (2)

● Same software framework (Athena based on Gaudi) and trigger
menu/steering was used for both Level 2 and EF, only difference
was data access.

● This decision was made ~2005, in the 199x's people still looked at
hardware or hardware assisted solutions.

● Quantities calculated in Level 2 had to be re-calculated in Event Filter.

● The appearance of multi/many-core rather than multi/many GHz
CPUs made it necessary to run multiple instances of Level 2 and
EF applications on a single machine.

● Event filter had a separate process responsible for I/O, but in the
Level 2 case the I/O was integrated into each application.

● Every ROS host had ~6000 TCP connections to Level 2
applications.

● The increasing number of cores per CPU would increase our memory
requirements (2 GByte per core was our assumption for HLT
applications)

7

The Run 2 Data Flow System Development Timeline

● Discussions started in 2009 about merging Level 2 and Event
Filter for Run 2.

● Prototyping and design started in serious in ~2011

● We wanted to have a usable system by the start of LS1

● We did not quite make it, but 2013/14 was spent on regular
Technical Runs (~1 week long, every other month) where we
used the full read out system and all of the HLT infrastructure for
testing the new software.

● Upgrades happened during that time to accommodate for the
new architecture → Network

● In addition other components that were assumed to be stable in
terms of interfaces went through their own evolution.

● → Read out system (2014)
● → Region of Interest Builder (this last winter shutdown)

8

The ATLAS Trigger and DAQ System in Run 2

9

Components of the ATLAS Data Flow

● For Run 2 the former Level 2 and Event Filter
farms have been merged into a single HLT farm.

● A big simplification in terms of applications (almost
a factor 2) and network architecture.

● The Region of Interest (RoI) concept has been
kept, and processing and data collection
proceeds in stages, beginning with fast algorithms
based on RoIs. The decision when to build the
event can be taken on a per event basis.

● The Readout System (ROS) buffers front-end data
from the detectors and provides a standard
interface to the DAQ.

● The Region of Interest Builder (RoIB) receives
L1 trigger information and RoIs and combines this
information for the HLT Supervisor.

● The HLT supervisor (HLTSV) schedules events to
the HLT farm and handles eventual time-outs.

A common message passing
library based on Boost ASIO is
used by the applications:
TCP/UPD only, vastly simplified
and dynamic configuration

10

Components of the ATLAS Data Flow (2)

● Components (cont'd)

● The Data Collection Manager (DCM)
handles all I/O on the HLT nodes, including
RoI requests from the HLT and full event
building.

● The HLT processing tasks are forked from
a single mother process to maximize
memory sharing, and run the ATLAS
Athena/Gaudi framework in a special online
mode.

● The data loggers (SFO) are responsible for
saving accepted events to disk, and send
the files to EOS.

The yellow boxes represent the core of the “new” architecture, the
interfaces to the other parts were kept the same. We also assumed that
we had to work with the same limits as in Run 1, at least in the initial
stages.

The yellow boxes represent the core of the “new” architecture, the
interfaces to the other parts were kept the same. We also assumed that
we had to work with the same limits as in Run 1, at least in the initial
stages.

11

HLT Supervisor (HLTSV)

● A single HLT supervisor replaces the set of (~6) L2
supervisors used in Run 1.

● Run 1 system required manual load-balancing of the farm over
the multiple L2 supervisors since the hardware RoIB was strictly
round-robin.

● A single application has the complete overview of the whole farm
and simplifies scheduling, global event ID assignment, recovery
etc.

● It uses a heavily multi-threaded design using the Boost ASIO
library for communication and Intel Thread Building Blocks
for concurrent data structures.

● 2 x 10 Gbit/s Ethernet interfaces to the data flow network.

● Same hardware as ROS machines

12

HLT Supervisor (2)

● It handles input from the RoIB, assigns events to HLT nodes
with free cores, handles timeouts and sends clear requests for
events to all ROS machines using UDP multicast.

● A single application can handle the input from the RoIB and
manage the HLT farm of ~1500 machines at ~115 kHz under
realistic ATLAS conditions.

● In pre-loaded mode (no S-Link input), and minimal data size the
application can sustain more than 250 kHz. This gives an idea of
the network and multi-threading capability of a current Linux
system: about 4 ms/event, including sending and receiving at
least one package, scheduling and handling timeouts for each
connection etc.

● A lot of effort was spent to have the HLTSV run as a single
application – the idea behind this was always to add the
Region of Interest builder functionality to it in software later.

13

Data Collection Manager (DCM)

● The DCM is a single application per HLT node that deals
with all I/O data requests from multiple HLT processing
tasks on the same node.

● It handles both Region of Interest request and full event building.

● It communicates to the HLT tasks via sockets and shared
memory, using the Boost Interprocess library.

● The shared memory is backed by a file, so that events can be
recovered in case of crashes.

● Its design is essentially single-threaded based on non-
blocking I/O using the Boost ASIO library.

● A credit based traffic shaping mechanism is used to prevent
overloading the incoming network link (into the node and the
rack). Cost for a request is based on the number of read-out
links that are requested.

14

Data Collection Manager (2)

● For accepted events the DCM also handles the preparation
(duplication) for an event going to multiple output streams
(e.g. for calibration purposes).

● Finally it compresses the event payload before sending it to
the data logger.

● These last two functions were originally foreseen in the data
logger itself. Since there were only a few instances, it was
considered a potential bottleneck.

● The compression was in practice always done in Tier-0, never
on the data logger.

15

HLT Processing Unit (HLTMPPU)

● The HLT processing unit encapsulates the Athena
framework that is running the actual HLT algorithms.

● It communicates with the DCM for I/O requests and provides
the trigger decision for each event.

● On each node a mother process is started first and goes
through all the configuration. A set of child processes is
forked when the run starts, maximizing the memory sharing
through the kernel's copy on write mechanism.

● → Crashed HLT applications can be quickly replaced by forking
another child instance.

● Tests with the full trigger menu show a memory consumption of
~ 1.8 GByte + N x 700 MByte (N = 8)

16

Stopping halfway...

● This was the first pass at the new architecture.

● The Readout System and the RoIBuilder were still the same.

● The connection to the data logger was still using the old
protocol

● The data logger was still doing the streaming.

● We discussed a lot what was the best strategy to trigger the
event building step (assuming the old memory limitations of
the readout system)

● Let DCM decide since it knows the distribution of read-out links
to physical ROS hosts.

● Let the HLT decide since it knows when an event is for sure (or
even most likely) accepted.

● In the meantime other developments went on in parallel...

17

Data Flow Network

The network architecture
was changed during the
rolling replacement to
match the new data flow.

All duplication here is for
redundancy at every level
in case of link/switch
failures.

Functionality wise a single
network is used for RoI
based access, event
building, and sending the
data to the data logger
(SFO).

Remaining main “issue” is
ingress traffic into
racks/nodes when
requesting data.

The network architecture
was changed during the
rolling replacement to
match the new data flow.

All duplication here is for
redundancy at every level
in case of link/switch
failures.

Functionality wise a single
network is used for RoI
based access, event
building, and sending the
data to the data logger
(SFO).

Remaining main “issue” is
ingress traffic into
racks/nodes when
requesting data.

HLTSV/

18

Readout System (ROS)

● The S-Link input and buffer hardware (Robin) has been upgraded to
a new board (RobinNP) based on the Alice C-RORC card with
ATLAS specific firmware.

● Switch from PCI-X to PCI Express.

● Higher density of optical link connectors:

● 12 per card, 2 cards per PC.
● Larger memory buffer.

● New set of ROS PCs:

● 2U form factor instead of 4U.
● 4 x 10 Gbit/s Ethernet per ROS PC.

● (was 2x1 Gbit/s)
● A fully connected ROS (24 links) sustains the required RoIB request

rate plus ~50 kHz of event building rate.

● A ROS with fewer input links and/or small enough fragments can run at
100 kHz.

19

RoI Builder Evolution

Run 1

2015

2016

20

Region of Interest Builder (RoIB)

● The original RoIB is a 9U VME based custom hardware solution,
consisting of multiple cards.

● The original hardware from Run 1 was the baseline in 2015.

● Larger input fragments for the Run 2 upgrade showed that the hardware is
close to its limits.

● A replacement based on the C-RORC board was developed.

● Common hardware between ROS and RoIB.

● A single PCI Express board suffices for all 10 inputs.

● The board directly integrates into the HLT supervisor.

● The combining of the input fragments is done in software.

● The new system was commissioned during this winter shutdown and has
been in successful operation since then.

● Vastly improved monitoring, flexibility regarding timeouts, error handling
etc.

● The final system can sustain a rate of 115 kHz under realistic ATLAS
conditions.

21

Data Logger

● In Run 1 a data logger was a PC
with 3 internal Raid5 raid arrays of 8
disks each.

● For Run 2 a direct attached storage
unit is used, with multiple front-ends
and redundant data paths for fault
tolerance and resilience.

● Experience so far show more than
adequate performance.

● Maximum bandwidth: >3 Gbyte/s

● Operation point: ~2 Gbyte/s

● Background jobs copy the files to
permanent storage, deleting them
on the local disk only when they are
safely on tape.

120 disks per node
340 TB total effectively for 3 systems.

22

Data Logger (2)

● The original data logger application
of Run 1 was replaced with an Intel
TBB task based version.

● Input threads could handle 20
Gbit/s input

● Hit limit at writing to disk at ~620
Mbyte/s due to contention in worker
threads.

● Rewritten to use Boost ASIO based
thread pool

● 2 input + 2 worker threads →
~ 850 Mbyte/s

23

What has changed from our initial ideas ?

● The ROS buffers are much (much...) larger than before...

● → We have given up discussing the best time to do event
building: the HLT just continues to request data as needed. The
full event is only built after the HLT processing is done and the
event is accepted.

● Originally the DCM took responsibility of the event after
building it, so it could be deleted from the readout system.

● Recovering events from the shared memory file is a pain – it
was implemented but never used in Run 1. It is also almost
impossible to properly include them into the physics streams
after the luminosity blocks are closed in the various databases.

● → Leave event in the ROS and only clear it when the data
logger has written it to disk (or thinks it has...)

● Eases DCM responsibilities, and we can avoid backing the
shared memory by a file.

24

What has changed (2)

● The data logger was replaced during LS1 with a new highly
multi-threaded implementation.

● Before the start of Run 2 we replaced the old protocol with the
common message passing library used for all other applications.

● The streaming and compression functionality was moved from
the data logger to the DCM applications (6 vs. 1500) → no
longer a possible bottleneck.

● Out network went from one large single switched network to a
routed network (e.g. 1 subnet per HLT rack). Only miminal
software changes were needed (like making sure the UDP
multicasts go beyond the routers).

25

What has changed (3)

● Remaining annoying issues are not completely under our
control: e.g. ARP storms when system was inactive for certain
time.

● → This happened even during running at low event rate, so we
implemented keep-alive messages on the application level to
keep the ARP entries for the TCP connections “hot”.

● Our copy-on-write idea for the HLT was a big success: except
for the unconfigure step, where all the allocated memory was
properly deallocated, causing massive unsharing and hitting
the local rack NFS servers hard.

● → We omit the last finalize() step in Athena and just kill the child
processes…

● Whoever wants to write something to log files at this point, has
to do it in a HLT specific finalize step.

26

Summary

● The ATLAS data flow has seen a considerable simplification
compared to Run 1.

● Both in the amount of software and the network resources (links
and switches).

● After LS1, every component has been either upgraded
hardware wise, or rewritten to take advantage of better design
choices.

● We had a working system at every intermediate step

● The new data flow system was in place beginning of 2014 and
has been used for all commissioning, integration, cosmic runs,
splash events and collisions taken by ATLAS since then.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

