

ATLAS DAQ in Run 3

Introduction

- ATLAS DAQ system evolution
- Front-End Link eXchange (FELIX)
- Software ReadOut Driver (ROD)
- Summary

Δ

ATLAS TDAQ Operating Parameters

	# Trigger	Rates (kHz)		Event Size (MB)	Network Bandwidth (GB/s)	Storage	
	levels					GB/s	kHz
Run 1	3	L1	75	~1	10	0.5	~0.4
		(L2+EF)	~0.4	1			
Run 2	2	L1	100	~2	50	1	1
		HLT	1				
Run 3	2	L1	100	~2	50	1	1
		HLT	1				
Run 4	3	LO	1000	~5	2000	~30	10
		L1	400				
		HLT	10				

Evolutional changes from Run 2 to Run 3

 Rolling replacement, Software, network, Readout System (ROS) if needed,

Jinlong Zhang, Argonne National Laboratory

DAQ (Run 2)

Hardware Components

ROBINNP (ALICE C-RORC)
Xilinx V6 LX240T FPGA
3 QSFP+ transceivers
2 x 4 GB DDR3 1066 MHz RAM
PCle 8 lane Gen2 interface

ReadOut System (ROS)

~100 PCs, each with 2 ROBINNP 4 x 10GBE

Router

Jinlor of Zhang, Argonne New Jaha Laborato Rows 3-8-2

Switch

HLT Farm

~2000 Multi-core PO

Network (1 GBE, 10GBE)
With
Redundancy &
Multi Chassis Trunking
(Brocade)

~2000 Multi-core PCs with rolling replacement

DAQ (Run 3)

Point-to-point (GBT and additions)

40 Gb Ethernet

Custom electronic components

Commodity hardware

Jinlong Zhang, Argonne National Laboratory

FELIX in Brief

- Router between serial/synchronous links (GBT and other protocols) and high level network links (40 GBE, InfiniBand, etc)
- Detector-agnostic and encapsulating common functionality (Merges and/or splits data streams but leaves content untouched)
- Handling detector configuration and control of calibration procedures
- Ensuring connectivity to the detector
 FE even in case of unavailability of other components (critical for DCS)

FELIX in Run 3

Link from detectors	~1000
FELIX I/O card	~50
FELIX PC servers	~25
FELIX NICs (40 GBE)	~50

TTC/BUSY handling for current and Phase-II TTC system

Jinlong Zhang, Argonne National Laboratory

Development

Status

Firmware

- GBT implementation and additions
- TTC interface and TTC/BUSY handling
- Central router
- PCIe data transfer

Software

- Driver and API
- Core software application
- Configuration and testing tools

Overall System

- Full chain functionality demonstrated
- Multi channel design being tested

Jinlong Zhang, Argonne National Laboratory

A Hardware Candidate

- Xilinx Kintex Ultrascale FPGA
 - 64 GTH transceivers (16.375 Gb/s)
- 4 MiniPOD TX and 4 MiniPOD RX
 - 48 bidirectional optical links (14 Gb/s)
- PCIe Gen3 x16 lanes
- Two DDR4 SODIMM up to 16GB
- Onboard: Clock conditioner, TTC receiver, BUSY lemo output

FELIX Network

- Multi gigabit network
 - O(100) ports at least at 40 GBE
- Technology choices (to implement a communication library)
 - 40 GBE or 100 GBE
 - FDR or EDR Infiniband
 - Intel Omnipath
- Very different usages of the same physical network
 - Different priorities → Need to find an effective way to do QoS
 - Different traffic patterns → Need to understand them and dimension accordingly
 - Critical traffic to transport (DCS, control) → Need to build a robust network

Jinlong Zhang, Argonne National Laboratory

04/13/2016

Network R&D

- Exploring how Data Centre Bridging Ethernet can be beneficial
 - Priority Flow Control and Congestion Notification
 - Towards lossless Ethernet
- Server based networking
 - Packet forwarding performed by the server's CPU
 - Close to unlimited buffers hosted in the server's memory
- Software Defined Networking
 - Trying to identify potential use cases (Network fail-over, dynamically assigning bandwidth, ...)
- DAQ network simulation
 - Working framework based on PowerDEVS tool
 - Well stablished methodology for modelling and simulation

Jinlong Zhang, Argonne National Laboratory

Software ROD

- Interface to FELIX
 - Bridge boundaries
 - Upstream transport (e.g. configuration)
 - Downstream transport (e.g. bulk dataflow)
- Heterogeneous ROS implementation
 - Retain the uniform interface between ROS and HLT, and the ROS buffering capability
- Detector specific functionality
 - Provide a platform for detector customized configuration, fragment building and processing code

Jinlong Zhang, Argonne National Laboratory

Status

- Exploratory design with
 - Inter-process communication (zeroMQ, interaction with stateless domain, etc)
 - Fragment Building Thread model
- Testing with
 - Dummy FELIX application and generic fragment objects
 - Realistic FELIX application based on NetIO
- Next step
 - Completion and testing of FELIX interface
 - Detector specific implementation

Jinlong Zhang, Argonne National Laboratory

Summary

- ATLAS DAQ system stays the same from Run 2 to Run 3 except
- FELIX (and related) to be introduced as new readout system for some detector systems

Jinlong Zhang, Argonne National Laboratory

04/13/2016