Development in electronics and DAQ integration in CMS for Run 3 and beyond

Jeroen Hegeman
For the CMS electronics coordination and DAQ groups
April 13, 2016
Ideas for development in electronics and DAQ integration towards Run 4

Jeroen Hegeman
For the CMS electronics coordination and DAQ groups

April 13, 2016
Introduction
Introduction

• Will focus on the ‘detector side’ of DAQ
• Run 3 is far away
• Run 4 even farther
• This presentation holds no concrete plans, nor recommendations
• But it is good to cultivate ideas/opinions spawning from the current upgrades
Introduction

LS1
Paradigm changes in various places

• Decoupled trigger control from physics algorithms (GT/TCDS)
• DAQ1 -> DAQ2: decoupled HLT from online framework, file-based transfer to the HLT, introduced ‘online cloud’
• First steps from VME to microTCA

YETS16/17, LS2, ...

• New pixel detector -> increase data volume.
• Integrate muon end-cap GEMs.

LS3
Main Phase 2 upgrades

• Detector, DAQ, and electronics overhaul
• Probably: ATCA, GBT. Beyond that?
Electronics standards/form factors
Electronics standards/form factors

- Original CMS systems: mixture of VME, compact-PCI and custom systems
- Phase 1 CMS upgrades based on microTCA
- Future upgrades have tentatively settled on ATCA
CMS microTCA use

- Bifurcate stream coming from FE to Trigger
- Common Control + Timing HUB and DAQ concentrator (AMC13)

In L1 upgrade reuse of various AMC cards (plug in FW)

Franse Meijers / 10.03.2016

ACES2016! DAQ at High Lumi LHC! V2

CMS uTCA Readout Crate (i.e. HCAL)

- Fiber links from detector i.e. GBT
- Fiber links to trigger
- Ethernet
- 12 AMC Slots
- Commercial MCH Management Ethernet
- AMC13 Clocks Fast controls DAQ
- Legacy TTC
- TTS / Local Trigger
- DAQ optical fibers

Credit: Eric Hazen (BU)
CMS microTCA use

Backplane

- Standard redundant telecom backplane with ports 2 and 3 routed to respective MCHs
- DAQ on AMC port 1
- LHC clock distributed on FCLKA
- Timing and fast control (TCDS) distributed on port 3
- *Note:* No PCI-express fabric clock

Secondary MCH slot used for AMC13

- TCDS interface to microTCA crate
- DAQ connectivity (up to three times 10 Gbps)
MicroTCA in CMS Phase 1

<table>
<thead>
<tr>
<th></th>
<th>Board</th>
<th>Main card developer</th>
<th>FPGA</th>
<th>Link connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everybody (TCDS/DAQ interface)</td>
<td>AMC13</td>
<td>Boston University</td>
<td>Kintex-7 + Virtex-6</td>
<td>3 RX/TX @ 10 Gb</td>
</tr>
<tr>
<td>HCAL</td>
<td>uHTR</td>
<td>University of Minnesota</td>
<td>Virtex-6</td>
<td>24 RX @ 6.4 Gb 12 TX @ 6.4 Gb 2 TX/RX @ 4.8 Gb</td>
</tr>
<tr>
<td>TCDS, Pixel</td>
<td>FC7</td>
<td>Imperial College London, CERN EP-ESE</td>
<td>Kintex-7</td>
<td>8 TX/RX @ 10Gb (first FMC site) 12 TX/RX @ 10Gb (second FMC site)</td>
</tr>
<tr>
<td>Trigger, GEMs</td>
<td>MP7</td>
<td>Imperial College London, CERN EP-ESE</td>
<td>Virtex-7</td>
<td>72 RX @ 13 Gb 72 TX @ 13 Gb</td>
</tr>
<tr>
<td>Calo trigger</td>
<td>CTP7</td>
<td>University of Wisconsin</td>
<td>Virtex-7 + Zynq</td>
<td>67 RX @ 10Gb 48 TX @ 10Gb</td>
</tr>
<tr>
<td>Muon track-finders</td>
<td>MTP7</td>
<td>University of Florida</td>
<td>Virtex-7 + Kintex-7</td>
<td>80+4 RX @ 10Gb 28 TX @ 10Gb</td>
</tr>
<tr>
<td>DT sector collector</td>
<td>TwinMux</td>
<td>INFN Padova</td>
<td>Virtex-7</td>
<td>64 RX @ 480Mb 12 RX @ 10Gb 12 TX @ 10Gb</td>
</tr>
</tbody>
</table>

- Clear reduction in electronics diversity, especially in the trigger upgrade.
- All microTCA infrastructure: COTS.
MicroTCA

MicroTCA

- Redundant powering
- Redundant control hub (MCH)
 - Not used in the CMS scheme
- Network-connected (ethernet), no point-to-point single-points-of-failure
 - Commercial success and future of microTCA is not clear

All-in-all

- The AMC/mezzanine approach is quite flexible
- In CMS, microTCA is part of the learning curve towards ATCA
ATCA

Easier to satisfy power requirements of large FPGAs and many links

Networked and self-managed, like microTCA
- Needs work to properly integrate into existing rack/power/cooling infrastructure
- Standard is intrinsically bad for timing/trigger systems
- Modularity-wise loses from good old CAMAC/VME

Lots left to learn

CMS is slowly settling on ATCA as the chassis choice for Phase 2. We’ll have to learn en-route, as we did with microTCA.
Tentative CMS plan

• Common shelf specification
• Common IPMC. E.g., design supported by CERN PH-ESE, including
• Follow the CMS microTCA approach: CMS integration switch blade (AMC13++)
 • TTC++
 • TTS++
 • DAQ interface
• For the moment aiming for 100 Gbps available on the backplane

Looming open questions

• DAQ via backplane or via leaf-card mezzanine?
• Memory-mapped PCIe, or ethernet-based networked access?
Everything part of the online cluster?
Point of study
Equip all new xTCA boards with embedded Linux endpoint?

System-on-a-module mezzanine

- Mezzanine-based implementation to allow upgrades
 - Could be sourced commercially
 - Atom vs. ARM?
 - Form-factor, pin-out?
- Define minimal CPU <-> board/FPGA communication set
 - PCIe (how many lanes?)
 - Ethernet (IPbus)
 - FPGA config protocol (SPI?)
 - USB (debug terminal)
 - JTAG

Source: Wikimedia Commons [1]
Everything part of the online cluster?

Point of study

Equip all new xTCA boards with embedded Linux endpoint?

OS support

- Would require a dedicated ‘CMS embedded OS’ distribution
- Could make electronics boards less of an exception for the sysadmins than they are now
 - DHCP instead of RARP
 - True TCP/IP instead of IPbus?
 - Network booting?

Source: Wikimedia Commons [1]
Point of study
Equip all new xTCA boards with embedded Linux endpoint?

Interesting, but no silver bullet
- Have to keep an eye on long-term support/availability
- Have to make sure we don’t retrace our steps on the single-board computer path from before.

Not intended to compete with the DAQ path, of course!

Source: Wikimedia Commons [1]
Between hardware and software
Firmware: more and more like software

A bit of a culture change

- Firmware projects becoming larger, with more specialized expert corners (e.g., high-speed links, clocking).
- Multi-developer projects require ‘software-like’ collaboration, code sharing, change tracking, etc.
Firmware: more and more like software

Example: L1 trigger upgrade

- Each processor firmware built from configurable list of tags and dependencies (board, algos, etc.).
- Software framework transparently maps common firmware functionality (!) across boards to common API.
- Code integrates with legacy trigger software, but does not depend on it.
- For testing, real software can run against simulated hardware.

SWATCH: Systems & processors (2)

- Upgrade subsystems:
 - Processor — uTCA card processing data, transmitted over optical links
 - DaqTTCManager — Connection to TCDS & DAQ networks (i.e. AMC13)
 - Stored in crates

- System — One or more processors & AMC13s
 - Each trigger subsystem = 1 SWATCH system
 - calol1, calol2, ugt, bmtf, omtf, emtf, ugmt

SWATCH: Systems & processors (3)

- Each processor contains following components, representing common basic layout of all processors:
 - TTC block
 - switch::processor::TTCIface
 - Readout block
 - switch::processor::ReadoutInterface
 - Input optical port
 - switch::processor::InputPort
 - Output optical port
 - switch::processor::OutputPort
 - Algorithm block
 - switch::processor::AlgoInterface

- Also:
 - switch::processor::LinkInterface - aggregates input/output ports

Credit: SWATCH developers
Summary
Summary

• LS2 is a bit of an intermezzo where CMS Trigger/DAQ upgrades are concerned
• But LS3 will see several important changes
• Anticipating important changes in system design, but also in development practices
• Not yet time for hard decisions, but it is time to solidify some of the lessons from the Phase 1 upgrade for the future
Backup slides