Data Analytics for Control Systems

DAQ Data Analytics Workshop

14 April 2016

Axel Voitier
Filippo Tilaro
Manuel Gonzalez Berges
Our vision of the analysis framework

Scalable and fault-tolerant !!!

Data Analysis Framework

Data Processing Modules

- Machine Learning
- CEP
- FFT
- Neural Network
- LabView
- Java
- WatchCAT
- SIMENS
- CRACLE DATABASE

Data collection & feedback

- PLCs
- Sensors & Actuators
- Fieldbus
- Field layer

Supervision layer

Configuration

Process layer

Historical Data

High Voltage

 dimsation

TN

OPC

Field

layer

Plcs

Sensors

data analytics workshop
Main expected features

› Integration with CERN control system
› Scalability
 ▪ Scale the computation load across several hosts (OpenStack VMs)
 ▪ Distributed storage for temporary results
› Merging events and numerical data analysis
 ▪ Predictive trending
 ▪ Temporal reasoning (CEP)
 ▪ Statistical Analysis
› Possibility to prototype additional plug-ins and algorithms
 ▪ Agree on a general API for new algorithm definition and integration
 ▪ Integration with ‘R’
 ▪ Data analysis flow definition in building blocks
› Reporting
 ▪ Graphical visualization of huge list of signals/results
 ▪ Interface to provide feedback to external systems (i.e.: WinCC OA)
› Conversion into a Service
 ▪ On-line mode for continuous control system monitoring over custom time-windows
 ▪ Support for historical analysis
› Data management
 ▪ Different sampling rates / gap
 ▪ Custom data model (i.e.: temperature in K/C)
 ▪ Custom data access (i.e.: vector vs sequence)
CERN control system
use-cases

Based on real examples
Use-cases classification

› **Online monitoring**
 - Continuous service to analyse the system status and inform operators in case of fault detection

› **Fault diagnosis**
 - “Forensics” analysis of system faults that have already happened in the past. In some cases root-cause analysis

› **Engineering design**
 - Analysis of historical data to draw conclusions about system behaviours which could be helpful to improve / optimize the system under analysis
Online monitoring

- Oscillation analysis in cryogenics valves (CRYO, CV)
- Online analysis of control alarms (MOON)
- Expert system on monitoring events (CMS)
- LHC dashboard (CRYO)
Oscillation analysis for cryogenics valves

Goal: detect whenever a signal is oscillating in any anomalous way. Impact on:

- Control system stability
- Increased communication load
- Maintenance (use of actuators)
- Safety
- Performances (Physic time)
Oscillation analysis flow

On-line analysis:

- > 3000 sensors
- Continuous analysis
- Frequency: 24h
Oscillation detection Ex#1

Time window of the signal under analysis: Uaux_UVMCAO_B12_001.POSST

FFT against threshold

Signal Uaux_UVMCAO_B12_001.POSST filtered with frequency: 0.00177767901783234 [Period: 562.53125]
Oscillation detection Ex#2

Time window of the signal under analysis: QURA_4.CV230AO.POSST

FFT against threshold

Signal QURA_4.CV230AO.POSST filtered with frequency: 0.016435309149452 [Period: 60.8141891891892]
Online analysis of control alarms

- Alarms analysis to detect anomalies or abnormal behaviors for thousands of devices
- Parallelization using the CERN OpenStack cluster
- Threshold learning algorithm and outliers detection techniques:
 - Graphical visualization of the anomalies/outliers

MOON: control system infrastructure monitoring

Data Processing → CERN cloud computing ← Anomaly detection

Web Reporting

April 2016 DAQ data analytics workshop
Complex Event Processing (CEP)

- Time
- Alert
- Low Current
- FPGA not configured
- Rate Update
- New Run
- Error
- Low occupancy

System Component Knowledge Base

- Alerts
- Actions
- Logging
- GUI

Dashboard

DCS
Front-end
DAQ
DQM

April 2016
DAQ data analytics workshop
HV trip recovery and channel management (10000 channels)

- **DCS**
 - Decrease voltage
 - **VSet = 3400V**
 - “Weak Channel”
 - Disable
- **Disabled Channel**

Time

1 hour sliding time window

- **Trip**
 - Trip
 - Trip
 - Trip
 - Trip
- **Trip**
 - Trip
 - Trip
 - Trip

Number of HV trips per month

- Number of HV trips decreased dramatically in 1 month of operation
 - Minimal loss in efficiency
 - Only small fraction of channels were labeled “weak” or disabled

April 2016

DAQ data analytics workshop
Control data visualization
LHC Dashboard (Brice Copy)

Features:

- Faster data extraction
- Database query protection mechanism
- Data distribution
- User friendly navigation
- Easy to access
- Multiple sources
- Multiple output formats (Charts, Table, Text)
- Similar to the Atlas DDV (DCS Data Viewer)

April 2016
DAQ data analytics workshop
Fault diagnosis (off-line)

• Root cause analysis for control alarms avalanches (GAS system)
An example:

Gas control system @CERN

- 28 gas systems deployed around LHC
- 4 Data Server, 51 PLCs (29 for process control, 22 for flow-cells handling)
- Essential for particle detection
- Reliability and stability are critical
 - Any variation in the gas composition can affect the accuracy of the acquired data
- ~18 000 physical sensors / actuators
Alarm flooding problem

Fault in the distribution system

Diagnosing a fault is complex: it may take weeks!
- Alarms flooding: a single fault can generate up to a thousand of events
- Number of different sequences:
 \[\approx 6 \times 10^{297} \] from: \(n!/(n-k)! \), \(n=\text{max seq. length}, k=n/10 \)
- A single fault can stop the whole control process
- The 1st alarm is not necessarily the most relevant for the diagnosis
- Alarm generation depends on the system status
Events stream analysis

Identify and detect fault / abnormal pattern for Diagnosis and Prognostics based on domain knowledge

Provide experts with Root-cause and Gap Analysis using Rules and Patterns Mining

Forecasts, Trends and Early-Warnings to increase Operating Hours

Event lists generated by the same fault

April 2016

DAQ data analytics workshop
Anomaly detection by sensors data mining

Goal: detect abnormal/unforeseen system behaviours

- Building a model based on historical data
- 3 different algorithms
 - Correlation index and KNN-graph
 - K-Mean clustering and probability model
 - Statistics expert-based model

Learning phase

\[E(d_{ij}) = \sum_{j=1}^{k} d_{ij} \cdot P(j|i) \]

\[\min_{C} \sum_{k=1}^{c} \max_{l \neq k} \left\{ \frac{\sum_{i} \parallel x_i - c_k \parallel + \sum_{i} \parallel x_i - c_l \parallel}{N_k \parallel c_k - c_l \parallel} \right\} \]

- Use the previous model to detect anomalies
- On-line analysis over a time window of 1 day
- Continuous analysis against thousands of sensors

Sensors data extraction

LHC Logging Service

April 2016

DAQ data analytics workshop
Engineering design

- PID supervision (CRYO, CV)
- Recommendation system for WinCC OA users (PSEN)
Evaluation of PID supervision

› In collaboration with the University of Valladolid

Based on: “Performance monitoring of industrial controllers based on the predictability of controller behaviour”, R. Ghraizi, E. Martinez, C. de Prada

› PID performance has an impact on:
 - Process security
 - Quality of physics
 - Maintenance (stress on the equipment)

› Issues:
 - Many sources of faults/malfunctions
 - System status dependency
 - External disturbances/factors
 - Bad tuning
 - Wrong controller type/structure
 - Slow degradation
PID supervision Ex#1

April 2016

DAQ data analytics workshop
PID supervision Ex#2

April 2016

DAQ data analytics workshop
Recommendation system for WinCC OA users

Users’ actions extraction

Users’ usage gap analysis

Normalized distribution of panels usage

Concentrate the effort to optimize the most used panels

Recommendation of panels based on the specific users’ sequences

Users’ frequent sequences

Recommendation of panels based on users’ sequences similarities

Jaccard Sequences Similarity

April 2016

DAQ data analytics workshop
Data Analytics Benefits

- **Increased System Reliability**
 - Minimized forced outages

- **Complete data analysis**
 - Reduced service effort: weeks → hours

- **24/7 Expert Knowledge Availability**
 - One central knowledge base

Operation support
- Big data visualization
- Forecast system status and take proper actions in time
- Prevent possible faults and system downtime

Diagnosis support
- Identify root causes
- More accurate analysis
- Accelerate analysis
 - From weeks to hours
- Identify hidden patterns

Engineering support
- Evaluate and improve operational performance
- Increase reliability and efficiency by design
- Lead control system decisions

April 2016

DAQ data analytics workshop
Conclusions

› Multiple data analytical activities in the experiments

› Data analytics brings an important added value to control systems
 ▪ A price to pay to integrate it into DCS

› Many data analytical activities started
 ▪ in an uncoordinated manner
 ▪ different technologies (ES, Storm, Esper, DroolsFusion...)
 ▪ Effort to homogenize all the activities under a common analytic platform
Use-cases: a partial list

› **Online monitoring**
 - Control System Health
 - Electrical power quality of service
 - Looking for heat in superconducting magnets
 - Oscillation in cryogenics valves
 - Discharge of superconducting magnets heaters

› **Faults diagnosis**
 - Anomalies in the process regulation
 - PLC anomalies
 - Data loss detection
 - Root-cause analysis for complex WinCC OA installations
 - Analysis of sensors functioning and data quality
 - Analysis of LHCb configuration management system
 - Analysis of OPC-CAN middleware
 - Data loss in LHCb DAQ
 - Analysis of electrical power cuts
 - Cryogenic system breakdowns

› **Engineering design**
 - Electrical consumption forecast
 - Efficiency of electric network
 - Predictive maintenance of control systems elements
 - Predictive maintenance for control disks storage
 - Vibration analysis
 - Efficiency of control process