Data Analytics for Control Systems

DAQ Data Analytics Workshop

14 April 2016

Axel Voitier <u>Filippo Tilaro</u> Manuel Gonzalez Berges

Our vision of the analysis framework

Scalable and fault-tolerant !!!

Main expected features

- > Integration with CERN control system
- > Scalability
 - Scale the computation load across several hosts (OpenStack VMs)
 - Distributed storage for temporary results
- > Merging events and numerical data analysis
 - Predictive trending
 - Temporal reasoning (CEP)
 - Statistical Analysis
- > Possibility to prototype additional plug-ins and algorithms
 - Agree on a general API for new algorithm definition and integration
 - Integration with 'R'
 - Data analysis flow definition in building blocks
- > Reporting
 - Graphical visualization of huge list of signals/results
 - Interface to provide feedback to external systems (i.e.: WinCC OA)
- > Conversion into a Service
 - On-line mode for continuous control system monitoring over custom time-windows
 - Support for historical analysis
- > Data management
 - Different sampling rates / gap
 - Custom data model (i.e.: temperature in K/C)
 - Custom data access (i.e.: vector vs sequence)

CERN control system use-cases

Based on real examples

Use-cases classification

> Online monitoring

 Continuous service to analyse the system status and inform operators in case of fault detection

> Fault diagnosis

 "Forensics" analysis of system faults that have already happened in the past. In some cases root-cause analysis

> Engineering design

 Analysis of historical data to draw conclusions about system behaviours which could be helpful to improve / optimize the system under analysis

Online monitoring

- Oscillation analysis in cryogenics valves (CRYO, CV)
- Online analysis of control alarms (MOON)
- Expert system on monitoring events (CMS)
- LHC dashboard (CRYO)

Oscillation analysis for cryogenics valves

- > Goal: detect whenever a signal is oscillating in any anomalous way. Impact on:
 - Control system stability
 - Increased communication load
 - Maintenance (use of actuators)
 - Safety
 - Performances (Physic time)

time

7

Oscillation analysis flow

On-line analysis:

- > 3000 sensors
- > Continuous analysis
- > Frequency: 24h

Oscillation detection Ex#1

CERNopenlab

Time window of the signal under analysis: UAUX_UVMCAO_B12_001.POSST

Oscillation detection Ex#2

Online analysis of control alarms

- Alarms analysis to detect anomalies or abnormal behaviors for thousands of devices
- Parallelization using the CERN OpenStack cluster
- Threshold learning algorithm and outliers detection techniques:
- Graphical visualization of the anomalies/outliers

CMS CSC Expert System

(Evaldas Juska)

CMS CSC Expert System Example (Evaldas Juska)

HV trip recovery and channel management (10000 channels)

Control data visualization

LHC Dashboard (Brice Copy)

Features:

- Faster data extraction
- Database query protection mechanism

- Data distribution
- User friendly navigation
- Easy to access

- Multiple sources
- Multiple output formats (Charts, Table, Text)
- Similar to the Atlas DDV (DCS Data Viewer) 14

DAQ data analytics workshop

Fault diagnosis (off-line)

• Root cause analysis for control alarms avalanches (GAS system)

An example:

Gas control system @CERN

- 28 gas systems deployed around LHC
- 4 Data Server, 51 PLCs (29 for process control, 22 for flow-cells handling)
- Essential for particle detection
- Reliability and stability are critical
 - Any variation in the gas composition can affect the accuracy of the acquired data
- ~18 000 physical sensors / actuators

Alarm flooding problem

8 Fault in the distribution system

Alarms flooding

- > Diagnosing a fault is complex: it may take weeks!
 - Alarms flooding: a single fault can generate up to a thousand of events
 - Number of different sequences:
 - ~6x10²⁹⁷ from: n!/(n-k)! , n=max seq. length, k=n/10
 - A single fault can stop the whole control process
 - The 1st alarm is not necessarily the most relevant for the diagnosis
 - Alarm generation depends on the system status

Events stream analysis

18

April 2016

CMSCsc_bi_recosso | Output Older Value Status | Kishing

Anomaly detection by sensors data mining

Goal: detect abnormal/ unforeseen system behaviours

CERNopenlab

LHC Logging **Service**

Sensors data extraction

DAQ data analytics workshop

Engineering design

- PID supervision (CRYO, CV)
- Recommendation system for WinCC OA users (PSEN)

Evaluation of PID supervision

> In collaboration with the University of Valladolid

Based on: "Performance monitoring of industrial controllers based on the predictability of controller behaviour", R. Ghraizi, E. Martinez, C. de Prada

> PID performance has an impact on:

- Process security
- Quality of physics
- Maintenance (stress on the equipment)

> Issues:

- Many sources of faults/malfunctions
- System status dependency
- External disturbances/factors
- Bad tuning
- Wrong controller type/structure
- Slow degradation

PID supervision Ex#1

DAQ data analytics workshop

PID supervision Ex#2

DAQ data analytics workshop

Recommendation system for WinCC OA users

Data Analytics Benefits

Increased System Reliability

- Minimized forced outages
- Complete data analysis
 - Reduced service effort: weeks \rightarrow hours
- 24/7 Expert Knowledge Availability
 - One central knowledge base

Operation support

- > Big data visualization
- > Forecast system status and take proper actions in time
- Prevent possible faults and system downtime

Diagnosis support

- > Identify root causes
- > More accurate analysis
- Accelerate analysis
 From weeks to hours
- > Identify hidden patterns

Engineering support

- > Evaluate and improve operational performance
- Increase reliability and efficiency by design
- > Lead control system decisions

Conclusions

- > Multiple data analytical activities in the experiments
- Data analytics brings an important added value to control systems
 - A price to pay to integrate it into DCS

> Many data analytical activities started

- in an uncoordinated manner
- different technologies (ES, Storm, Esper, DroolsFusion...)
- Effort to homogenize all the activities under a common analytic platform

Use-cases: a partial list

> Online monitoring

- Control System Health
- Electrical power quality of service
- Looking for heat in superconducting magnets
- Oscillation in cryogenics valves
- Discharge of superconducting magnets heaters

> Faults diagnosis

- Anomalies in the process regulation
- PLC anomalies
- Data loss detection
- Root-cause analysis for complex WinCC OA installations
- Analysis of sensors functioning and data quality
- Analysis of LHCb configuration management system
- Analysis of OPC-CAN middleware
- Data loss in LHCb DAQ
- Analysis of electrical power cuts
- Cryogenic system breakdowns

> Engineering design

- Electrical consumption forecast
- Efficiency of electric network
- Predictive maintenance of control systems elements
- Predictive maintenance for control disks storage
- Vibration analysis
- Efficiency of control process

27