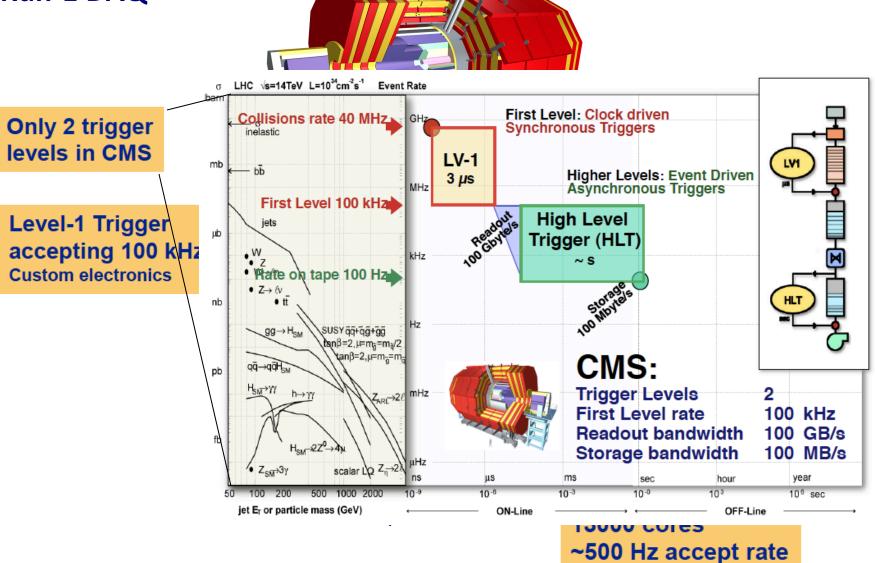
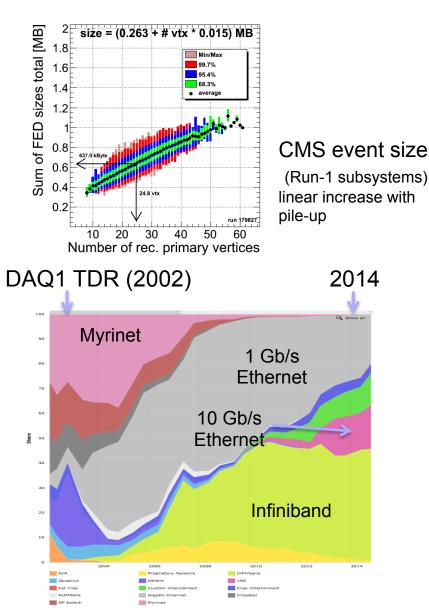

The Run-2 DAQ System of CMS

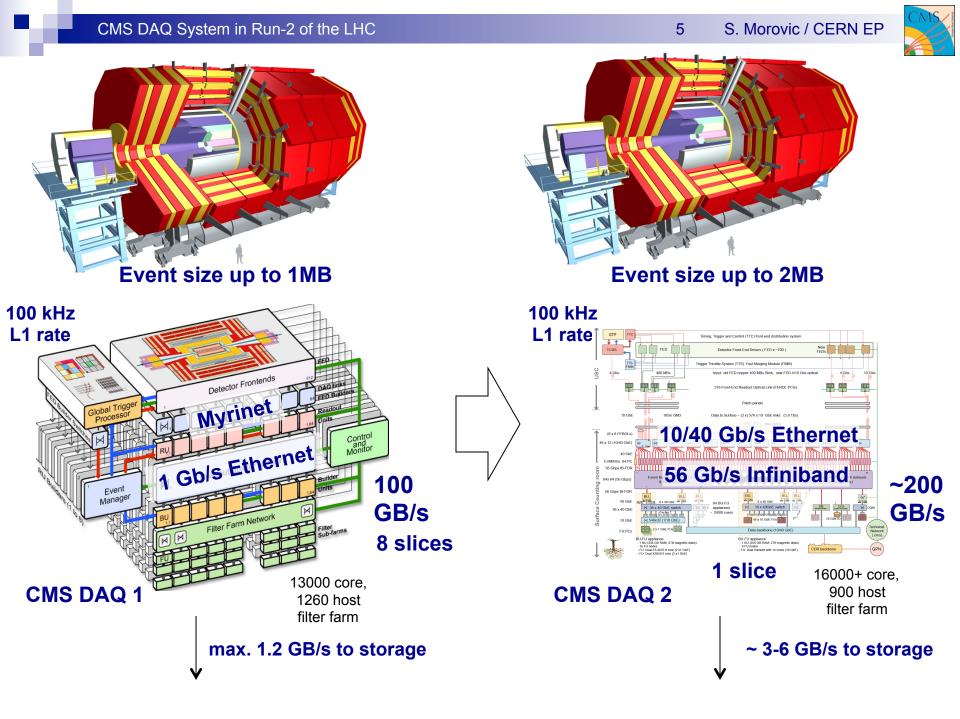
ALICE, ATLAS, CMS & LHCb Second Joint Workshop on DAQ@LHC, Chateau de Bossey, Switzerland, 12th April, 2016

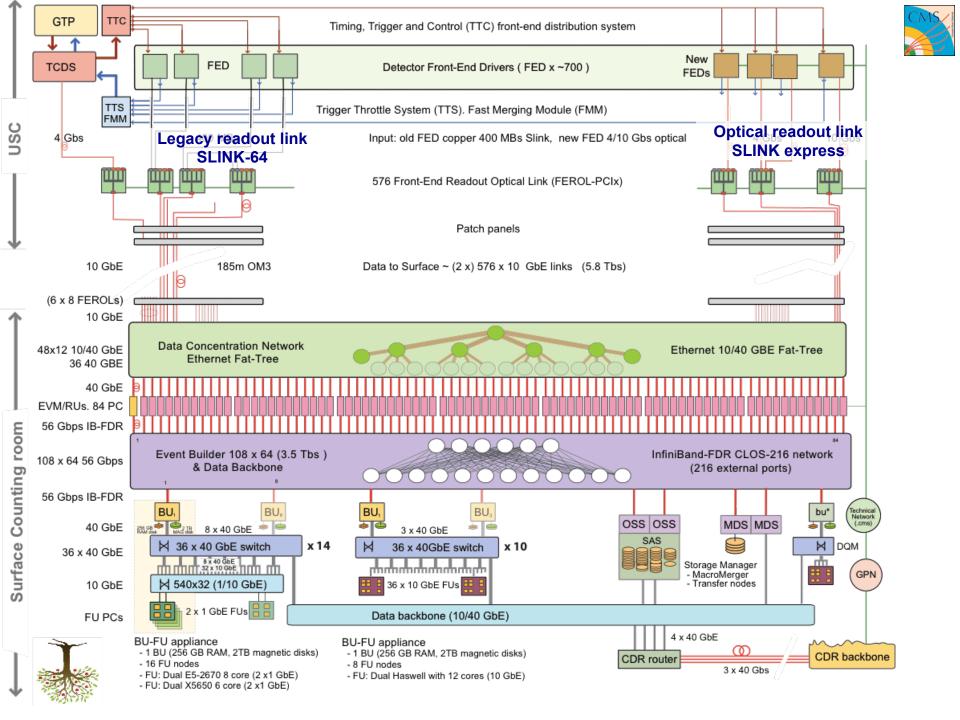
Srećko Morović, CERN/EP-CMD On behalf of the CMS DAQ group


Detector	Channels	Control	Ev. Data
Pixel	6000000	1 GB	50 (kB)
Tracker	10000000	1 GB	650
Preshower	145000	10 MB	50
ECAL	85000	10 MB	100
HCAL	14000	100 kB	50
Muon DT	200000	10 MB	10
Muon RPC	200000	10 MB	5
Muon CSC	400000	10 MB	90
Trigger		1 GB	16

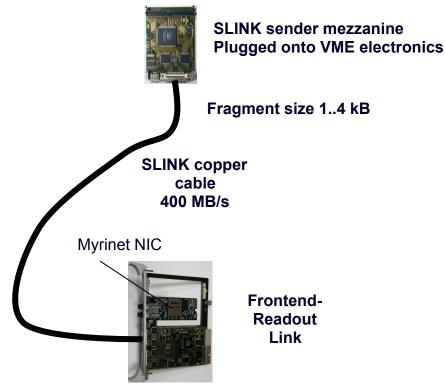
3 S. Morovic / CERN EP


Introduction: Run-1 DAQ

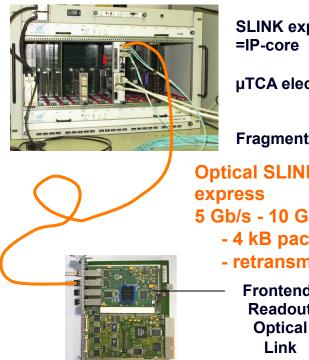

CMS DAQ for LHC Run-2


- Requirements in Run-2
 - 100 kHz level 1 trigger rate (unchanged)
 - □ 1 MB event size → 2 MB (large margin)
 o Increase in pileup
 - o Detector upgrades
 - Accommodate legacy and new uTCA-based detector readouts
 - 1-2 kB (old) or 8 kB (new) fragments
- Other reasons to upgrade:
- Ageing hardware
 - Most components reached end-of-life cycle
- New technologies
 - Myrinet widely used when DAQ-1 was designed
 - Ethernet and Infiniband dominate the top-500 supercomputers today

Top500.org share by Interconnect family



New or upgraded detectors in CMS


- Several detectors / online-systems upgraded to cope with higher luminosity
- Increase of event size
- New readout electronics based on μ TCA

640 Legacy Links: SLINK-64

(600 after Pixel upgrade)

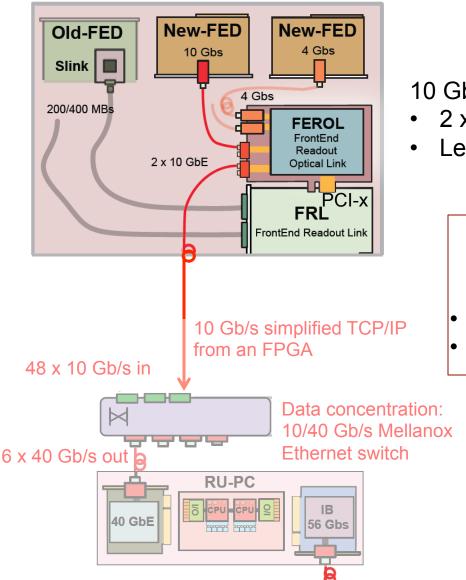
- 2014: New Trigger Control and Distribution System
- 2014: Stage-1 calorimeter trigger upgrade
- 2014/15: new HCAL readout electronics
- 2016: Full trigger upgrade
- 2017: New pixel detector and readout electronics

SLINK express sender =IP-core

µTCA electronics

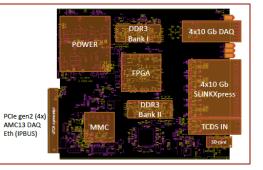
Fragment size 2..8 kB

Optical SLINK-5 Gb/s - 10 Gb/s (2016) - 4 kB packets - retransmit Frontend-Readout


+ 50 new Links: SLINK-express

(170 after Pixel upgrade)

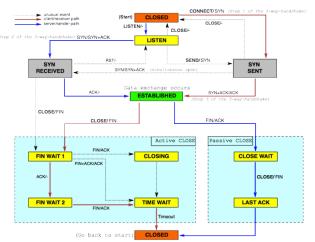
Frontend-Optical Link & Data Concentrator

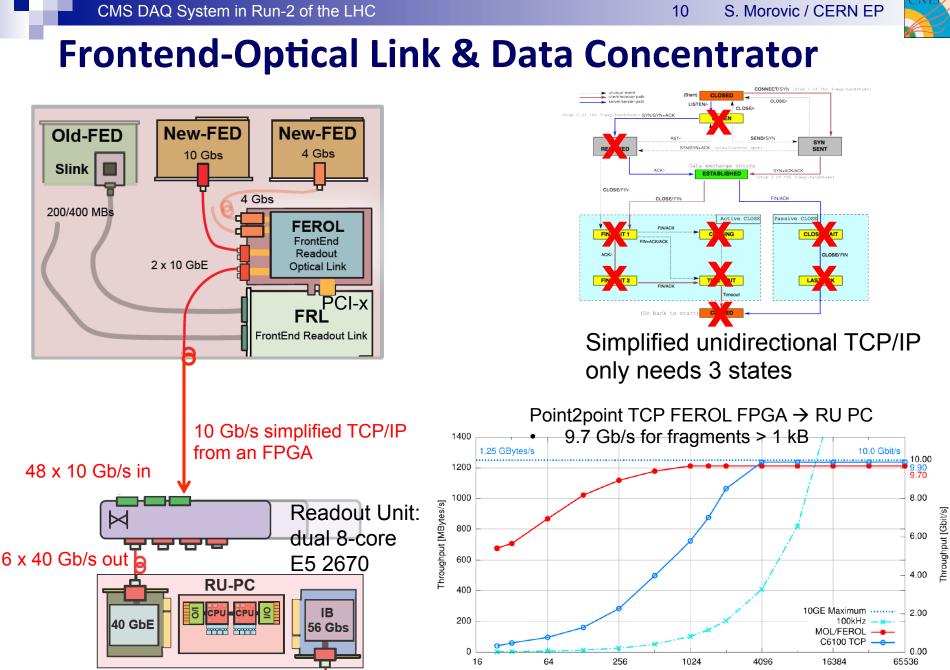


10 Gb/s throughput in FEROL

- 2 x 5 Gb/s or 1x10 Gb/s new FEDs
- Legacy 200/400 MB/s FRL cards

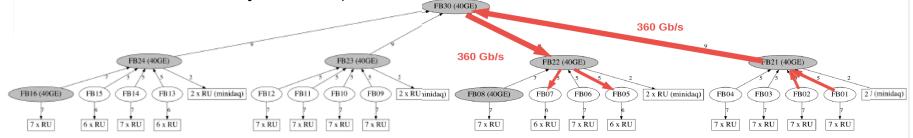

early 2017: FEROL-40


- 4x 10 Gb/s inputs
- 4x 10 Gb/s outputs

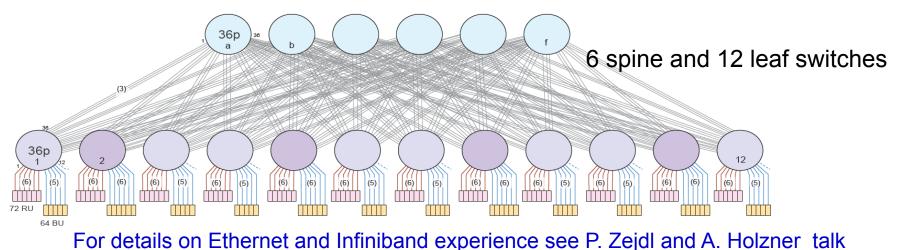


Frontend-Optical Link & Data Concentrator

TCP/IP in principle difficult to implement in an FPGA ...



Fragment Size [Bytes]


Data concentrator and event building networks

- Fat-Tree data concentrator setup:
- 16 x 10/40 GbE leaf switches + middle and top spine switches
- 108 Readout-Units (including spares)
- Allows FEROL RU traffic routing throughout data concentrator network (needed for tracker readout in heavy-ion runs)

Infiniband

• 108 x 72 Event Builder – 56 Gb/s FDR Infiniband Clos network (108x108 I/Os)

11

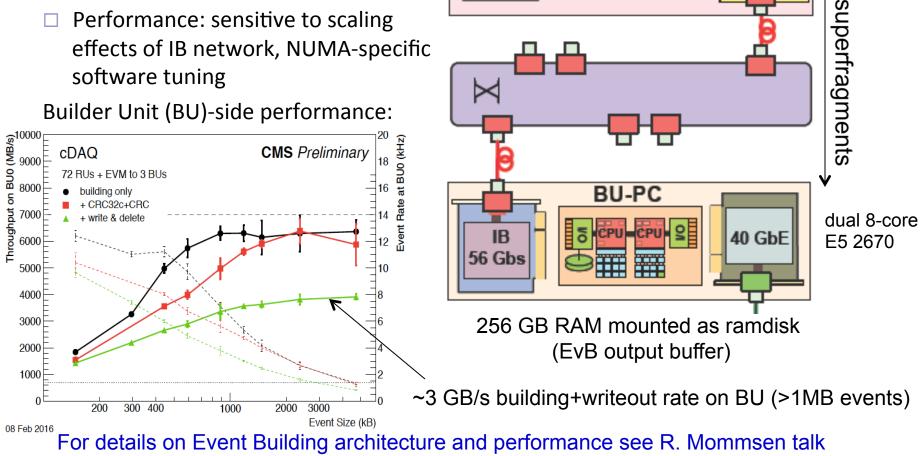
IB

56 Gbs

RU-PC

δ

40 GbE

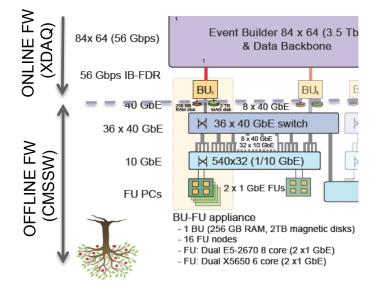


dual 8-core

E5 2670

Event Builder

- Software based on Linux TCP stack (RU 40 GbE) and Infiniband Verbs
- On both ends :
 - Multiple threads for data reception/ writing
- Performance: sensitive to scaling effects of IB network, NUMA-specific software tuning



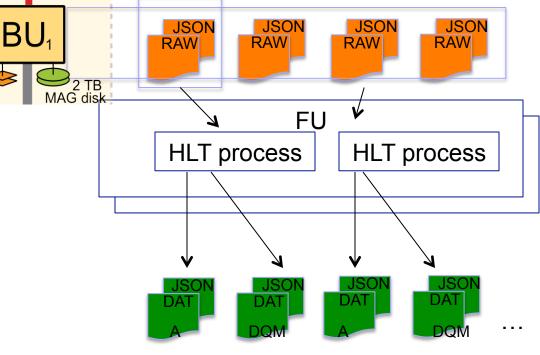
Filter Farm and High Level Trigger

New approach in Run-2: File-based Filter Farm

- Input, output of event and non-event data, monitoring and logging through files
- Network filesystem used as transport (and resource arbitration) protocol
- Reduced coupling between DAQ and HLT
 - Use of standard offline software (CMSSW), with DAQspecific code as modules
 - \rightarrow no mixing with Online (XDAQ) framework as in Run-1
 - separate release cycles, simplified development, maintenance and debugging
 - Data-driven execution, decoupled from upstream DAQ state

- Filter Farm consists of 62 72 HLT appliances
 - □ 12 18 Filter-Units (FU) mount the 256 GB RAM disk of each BU via network (**NFSv4**)
 - Connected through:
 - 40 GbE (BU) to 10 GbE network (new FU nodes) or 40/10 to 1 GbE network (legacy Run-1 FU nodes)

256 GB[⋜] RAM disk

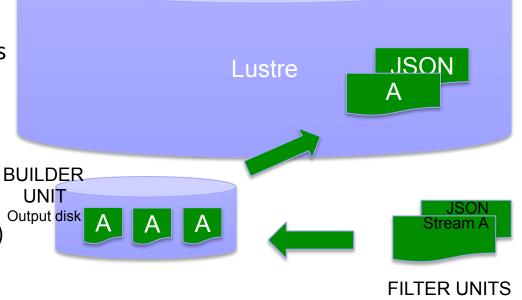


Filter Farm data flow

Every data file accompanied by a **metadata file in JSON format** (description of input or output file)

 Data read from RAM disk and processed/filtered by HLT jobs running in FUs

Max. input rate per BU: 2kHz, ~ 2.2 – 2.6 GB/s Max. output rate to BU: 150 MB/s (into 4x disk RAID0 array)


HLT output "stream" files

Approx ~30 streams (in collision HLT 'menu') Physics, Calibration, DQM, Event Display, Monitoring ...

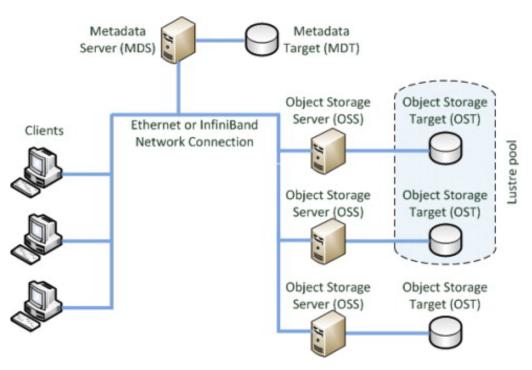
Merging and storage

- HLT output scattered on ~900 nodes
- 3 levels of data merging aggregate data into a global filesystem (Lustre FS):
 - 1. micro-merging
 - Per-stream HLT output (JSON/data) concatenated in FU and copied to BU output disk
 - 2. mini-merging: services running on BUs
 - Merge step 1 data and metadata to a location in Lustre FS
 - data single per-stream output file in Lustre (done in parallel on BUs)
 - 3. macro-merger running on dedicated merger nodes
 - completes event count bookkeeping

HLT Farm Hardware in Run-2

HLT farm 2015:

Installed	product	vendor	cpu type	#cores/ box	network	#boxes	#cpus	kHS
2011 *	C6100 (Westmere)	Dell	X5650	12	1 GbE x2	288	3456	59
2012	C6220 (Sandy Bridge)	Dell	E5-2670	16	1 GbE x2	256	4096	90
2015	S2600xp (Haswell)	Megware	E5-2680v3	24	10 GbE	360	8640	194
total						904	16190	342


HLT farm 2016:

Installed	product	vendor	cpu type	#cores/ box	network	#boxes	#cpus	kHS
2012	C6220 (Sandy Bridge)	Dell	E5-2670	16	1 GbE x2	256	4096	90
2015	S2600xp (Haswell)	Megware	E5-2680v3	24	10 GbE	360	8640	194
total	S2600xp (Broadwell)	Action	E5-2680v4	28	10 GbE	324	9072	195
total						940	21808	479
	HLT processing	capacity	2016 / 201	l5 (kHS)	= 1.4			

* C6110 nodes will be kept in 2016 for running Cloud

Storage: Lustre FS

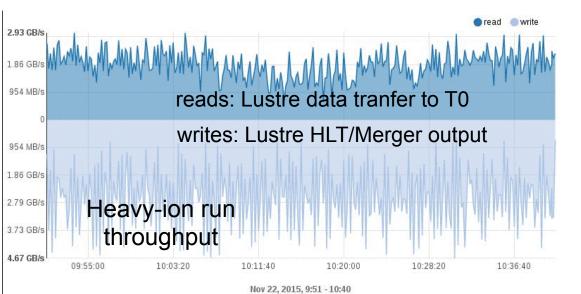
Production performance in 2015:

4 GB/s write (merging)
 + 2 GB/s read
 (Heavy-Ion runs)

Hardware:

- 6 Dell R720 servers: 2 x MDT nodes, 4 x OSS nodes (with OST + disk shelves)
- 350 TB usable storage space in RAID6 volumes
- Mounted on each Builder Unit (Infiniband), merger nodes and transfer system nodes (40Gb/s Ethernet)

For more details on Lustre deployment see L. Darlea talk

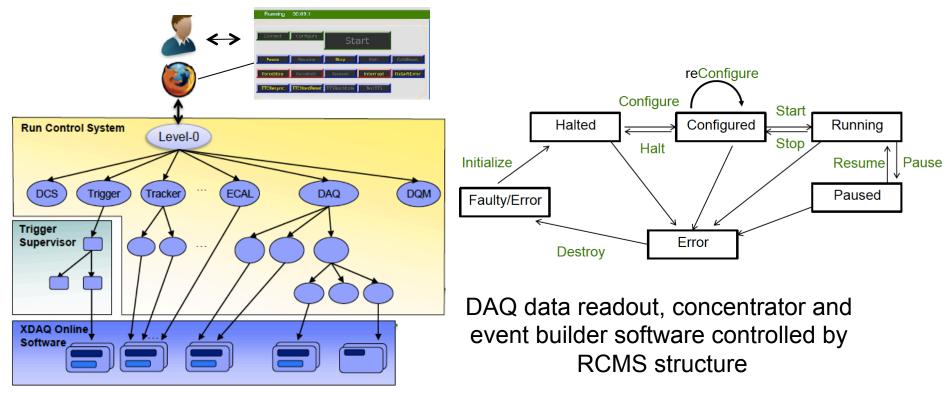


Transfer system

Services with access to merger output on Lustre

- Merged data copied to Tier0 or to consumers (e.g DQM, Event display)
 Tier0 transfers:
- 4x40 GB/s CMS CDR uplink to IT
- Xrdcp copy to EOS
 - Multi-threaded copying from up to 3 nodes
- Injection of run event accounting/bookkeeping into DB for Tier0

Parts of transfer system inherited from Run-1


Transfer monitoring page:

Size [GB]	<u>Files</u>	Evnts	Disk MB/s	Tier0 MB/s	<u>Open</u>	Close	Inject	<u>Transfr</u>	<u>Check</u>	Repack	Dele
58.79	1634	6816991	2351.28	369.06	0	1634	1624	190	190	0	
.4	15	430	2.03	.52	0	15	15	2	2	2	
12.55	10170	42307039	2292.09	328.28	0	10170	10170	1322	1322	0	
48.45	1266	10650462	10.11	.53	0	1266	1266	211	211	211	2
99.08	1387	1873774	214.99	28.52	0	1387	1387	263	263	252	2
47.07	1502	9539146	8.09	.52	0	1502	1502	254	254	254	2
00.87	619	11372329	169.48	1.81	0	619	619	103	103	103	1(
44.62	14101	56427100	2263.48	246.31	0	14101	14101	1802	1802	1691	17
.24	16	33212	1.9	.15	0	16	16	3	3	3	
3.19	72	757662	12.8	.48	0	72	72	12	12	12	1
73.91	132	6596042	359.77	79.73	0	132	132	22	22	22	:
6.43	393	386717	4.26	.52	0	393	393	67	67	67	
11.89	426	7882646	133.11	2.26	0	426	426	71	71	71	1
89.19	14225	54802741	2206.21	300.1	0	14225	14225	1832	1832	1820	18
.01	6	2280	.85	.01	0	6	6	1	1	1	
02.68	4008	17584788	6.48	.51	0	4008	4008	692	692	692	6
67.77	564	9980374	126.53	2.13	0	564	564	94	94	94	1
.44	1107	408751	.01	.01	0	1107	1107	1107	1107	1107	110
0	14	2916	.01	.01	0	14	14	14	14	14	1
0	10	2301	.01	.01	0	10	10	10	10	10	1
0	16	3742	.01	.01	0	16	16	16	16	16	1
.03	125	30423	.01	.01	0	125	125	125	125	125	13
0	13	3069	.01	.01	0	13	13	13	13	13	1
0	6	1248	.02	.01	0	6	6	6	6	6	
0	6	1340	.01	.01	0	6	6	6	6	6	
04.77	9632	36831588	1461.86	106.39	0	9632	9632	3935	3934	1206	12
.02	12	13	.13	0	0	12	12	12	12	12	1
.05	55	44022	.04	.04	0	55	55	55	55	55	
60.17	32	72922	684.64	.51	0	32	32	32	32	30	1
20.40	40	463466	1062.16	4.4	0	40	40	40	40	20	

Control structure

 DAQ (and other CMS subsystems) instantiation, configuration, states and transitions defined/controlled through synchronous state machine hierararchy -Run Control and Monitoring System (RCMS) system

- RCMS retrieves system configuration from DB contains definition of hardware, applications & parameters, interconnects, etc.
- Blacklist DB special database definining which hosts should not be used (mostly used to exclude broken hardware)

Control structure: Filter Farm, mergers, transfers

- HLT, merging and transfer system are permanently running system services
 - Not integrated into run control structure
- Services await external notification:
 - e.g. new run in $F^3 \leftarrow$ creation of new run directory by Event Builder in ramdisk
- All relevant information propagated through RAM disk from BU, such as:
 - HLT menu (configuration), which FU host should participate in the run (blacklist), transfer destination
- Feedback returned to EvB through ramdisk
 - State of resources, latency (EvB can apply backpressure or raise alerts in monitoring)
- Asynchronous execution
 - run in Filter Farm lasts until data is processed
 - Following runs are queued and executed as resource are releases

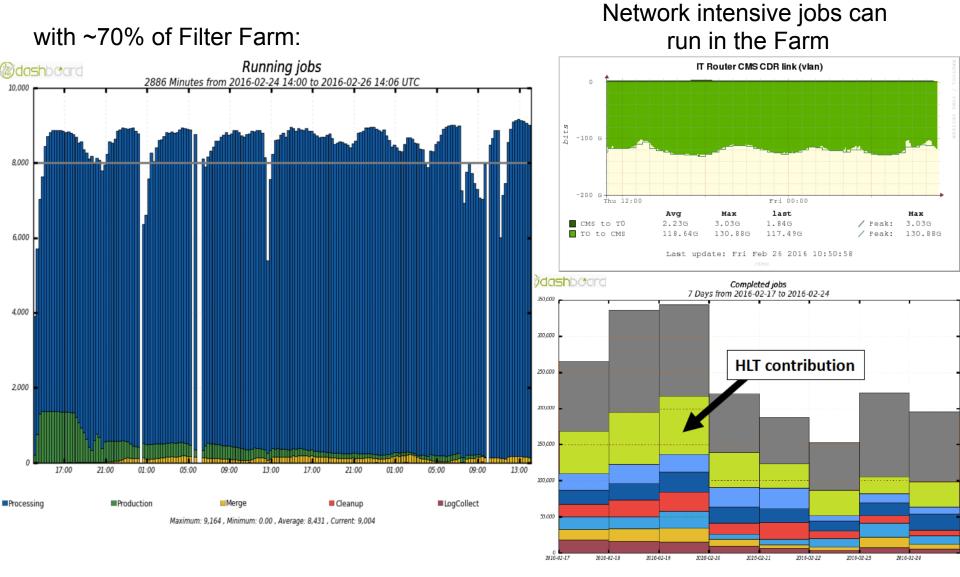
CMS

Filter Farm Cloud architecture

• HLT farm is under-utilized in technical stops and LHC interfills periods

Farm size in 2015 (HEP-SPEC06)	HLT	Tier0	All CMS Tier1 sites
CMS	350K (~500k in 2016)	300K	~300K (>500k in 2016)

- Added ability to run WLCG grid jobs in FUs (switch off HLT) T2_CH_CERN_HLT
 - jobs encapsulated in VMs on FUs (Cloud)
 - OpenStack based infrastructure


Main site	4x40Gb	CDR network to Tier0	
		Nova virtual network (vlan)	
		Data network	
CMS site	10GbControllers (x4)Corosync/PacemakerKeystoneAPIsGlanceSchedulerGlanceSchedulerCloud-igniterVMs gatewayNATNAT	Compute (x90 VM MariaDB/Galera 3 nodes cluster Corosync/pacemaker HA Proxy db Compute Filer Glance images Compute No No No No No No No No	VM VM AT virt va vork va pute va data
	10Gb 10Gb 10Gb 10Gb	10Gb 20Gb Management network	1Gb
	Certif ublic Network		

- 40GbE data network (using F³ network)
- VMs interfaced to VLANs for connections outside of CMS technical network

TL_DE_KIT

Jobs running in the cloud

TI_US_FNAL TI_RU_JINR

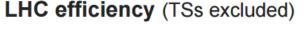
TZ_CH_CERN_HLT

TI_FR_CCIN2P3

Maximum: 343,563 , Minimum: 152,584 , Average: 240,392 , Current: 195,410

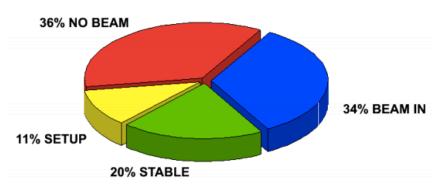
TI_IT_CNAF

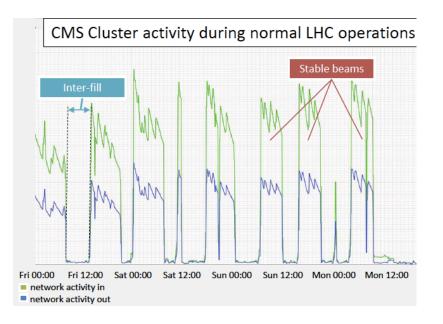
TL_UK_RAL


TL ES_PIC

Opportunistically running Cloud during interfills

- Challenges:
 - Unpredictable and short periods of inactivity (3 to 6 hours)

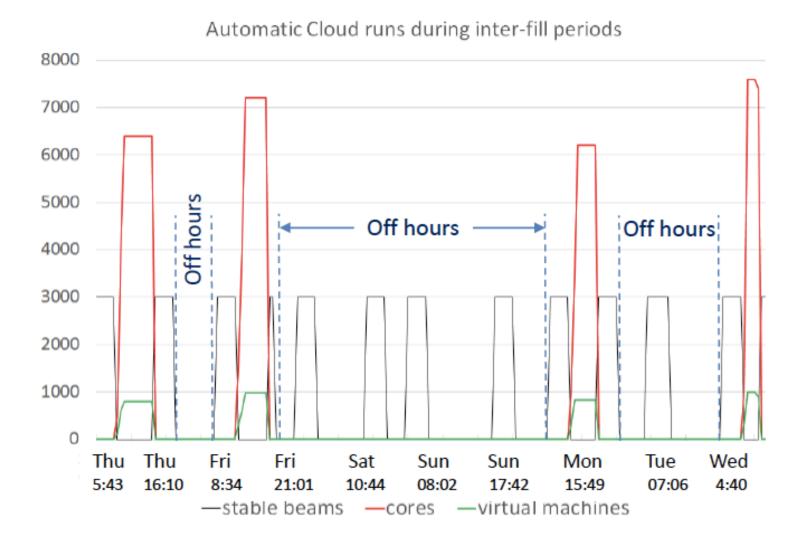

Jobs could be terminated on a short notice \rightarrow Duration suitable for only a subset of CMS jobs


- Fast switchover and release of resources between Cloud and HLT implemented
- VM image distribution large traffic volume (initially lasted hours)
- → Deployment to FUs optimized to 8 minutes using Squid proxies, compression and transfer over 10 GbE connections
- Fully automatized cloud start / stop for 2016:
 → based on parsing LHC states (started at beam dump, stopped at next flat top)

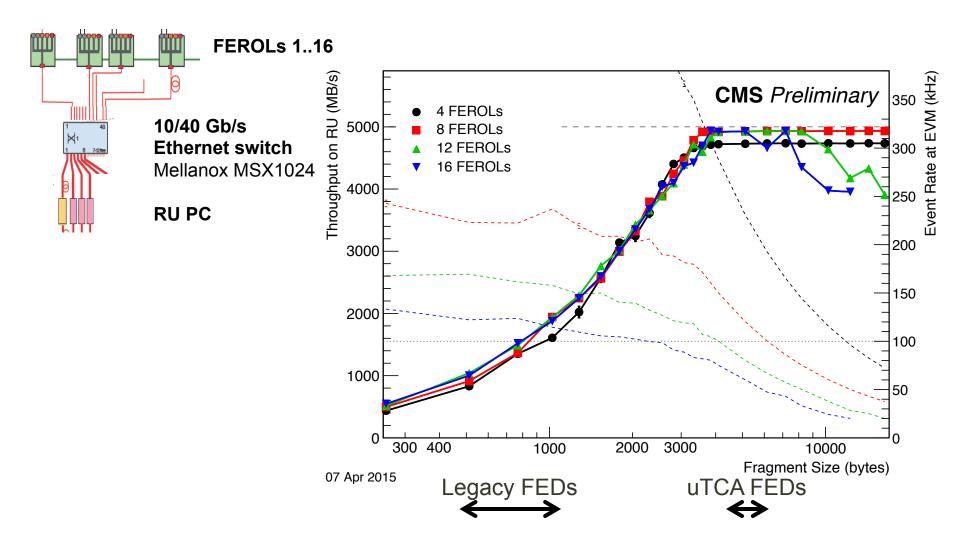
23

S. Morovic / CERN EP

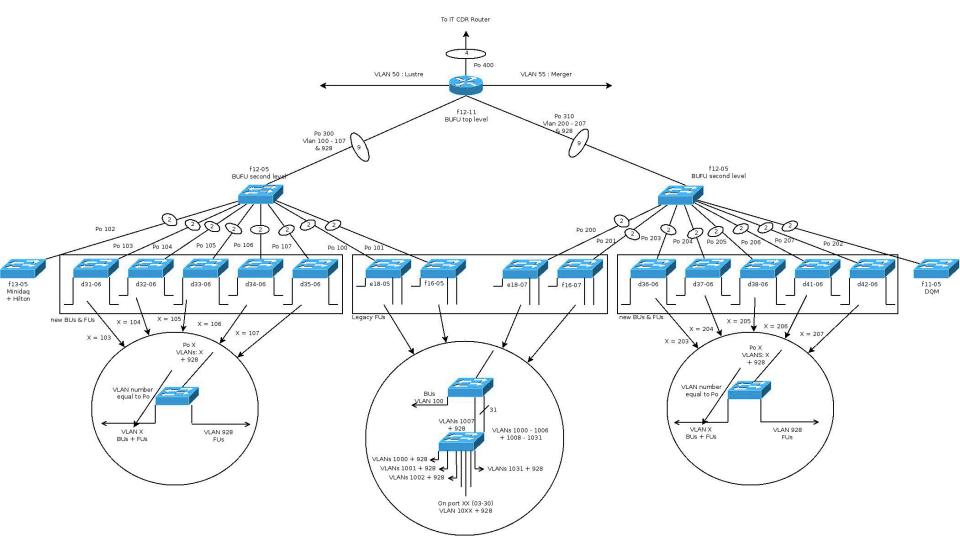
Summary


- A new DAQ system for Run-2 has been commissioned and used in production
 - New optical SLINK-express readout link
 - □ 10 Gb/s TCP/IP from an FPGA
 - 10/40 Gb/s Ethernet data concentrator
 - □ 56 Gb/s FDR Infiniband core event builder
 - □ File-based high-level trigger (via 1/10/40 Gb/s Ethernet)
 - Cloud capability integrated in the Filter Farm
 - Lustre File System for storage
 - Throughput doubled to 200 GB/s
- Performance required for Run-2 within DAQ2 capacity
 - Sufficient for proton-proton and Heavy-Ion runs in 2015
 - □ Higher readout capacity for detector upgrades planned (FEROL40)

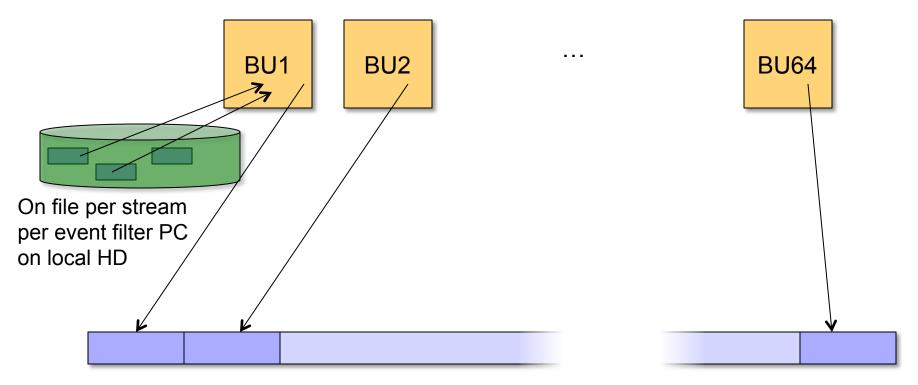
Backup


Cloud proof-of-concept running in interfills

• Tested in 2015



Data concentrator scaling

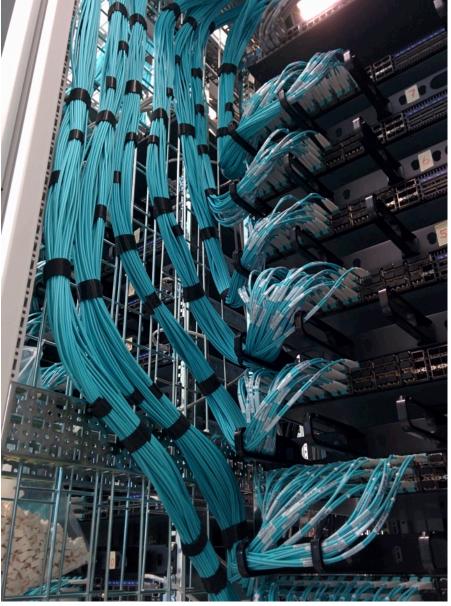

Filter Farm / merger data network

Merging algorithm

For large streams – single-copy algorithm

• BU merger service appends output to a single global file in Lustre (chunks written to in parallel from BUs)



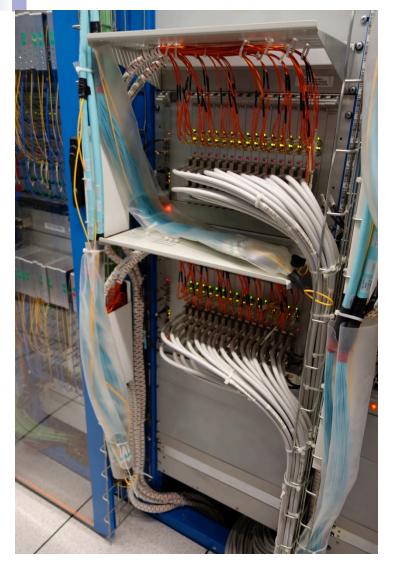

Single output file in the cluster file system (per output stream)

CMS DAQ System in Run-2 of the LHC

Data concentrator patch panels

and switches

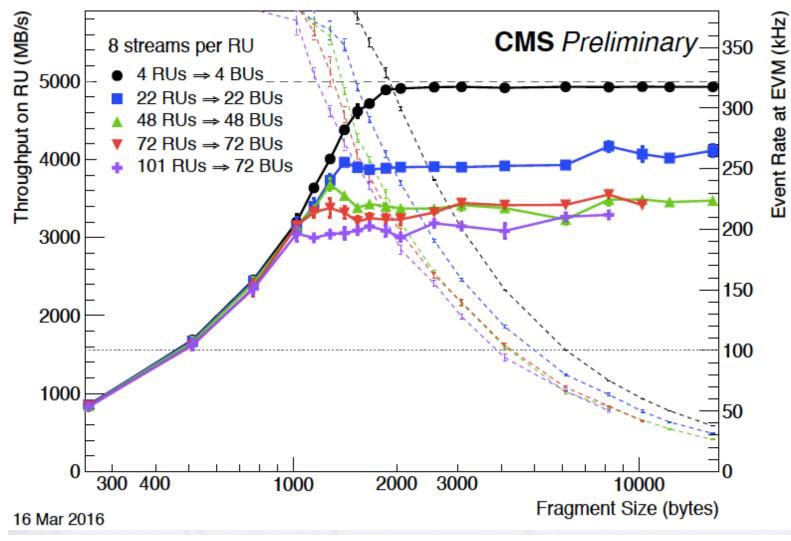
CMS DAQ System in Run-2 of the LHC



Infiniband Clos network

CMS DAQ System in Run-2 of the LHC




FRL/Myrinet

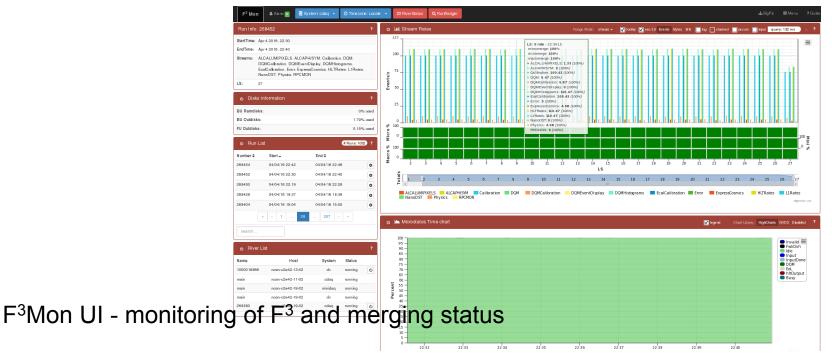
FRL/FEROL 10 Gb/s Ethernet

Switchover in 2014

Performance of EVB network (readout-unit)

Streaming of data from *n* to *n* nodes (no event building)

33 S. Morovic / CERN EP



CMS

HLT and merger monitoring

Elasticsearch (NoSQL DB) based monitoring

- near real-time latency (~second)
- Injection of all JSON metadata files used in Filter Farm (and merging system)
 Used to build several web tools

Elasticsearch also used for monitoring of other DAQ components (XDAQ monitoring)

For more details see talk by D. Simelevicius

