
High speed data
networks in CMS

Petr Žejdl (Fermi National Accelerator Laboratory)
André Holzner (University of California, San Diego)

on behalf of the CMS DAQ group

1

Overview

¡ Ethernet data concentrator network
¡ Fat tree topology
¡ long lasting TCP connections: importance of

hash functions

¡ Infiniband
¡ custom forwarding tables for improved

performance
¡ blocking counters

2

Data Concentration Ethernet
Network in CMS

 (Fat-Tree)

Data Concentration Network

Underground

Surface

4

Data Concentration Network

● Plays a key part in data concentration

– Sources 10GbE optical links from ~600 FEROLs (10 GbE TCP/IP)

– Sinks 40GbE optical links to 108 Readout Units (RU)

– Designed as a Fat-Tree Network with three switching layers

– FEROLs and RUs connected to leaf switches

– 360 Gbit/s between top and middle layer

– 200/280 Gbit/s between leaf and middle layer

5

Middle layer
4x 40GbE SX1036

Leaf switches
14x 10/40GbE
 2x 40 GbE

Top layer
1x 40GbE

120 copper
cables deployed

6

The Fattest Test

9x iperf running in parallel:
Connecting to host ru-c2e12-24-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.5 Gbits/sec
Connecting to host ru-c2e12-25-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.6 Gbits/sec
Connecting to host ru-c2e12-26-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.6 Gbits/sec
Connecting to host ru-c2e14-24-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.6 Gbits/sec
Connecting to host ru-c2e14-25-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.6 Gbits/sec
Connecting to host ru-c2e12-30-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.6 Gbits/sec
Connecting to host ru-c2e12-34-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.6 Gbits/sec
Connecting to host ru-c2e12-35-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.5 Gbits/sec
Connecting to host ru-c2e14-30-01.fbs0v0.cms, port 5201: [4] 0.00-10.00 sec 39.5 Gbits/sec

360 Gb/s

360 Gb/s

7

DONE?

Fat-Tree and Link Aggregation

● A LAG (Link Aggregation Group) / port trunking

– Combines a number of physical ports together to make a single
high-bandwidth data path

– Uses a load-balancing method (hash function) for packet
distribution, usually a combination of

● L2 (MAC Address)

● L3 (IP address)

● L4 (TCP/UDP port numbers)
9

* http://www.answers.com/article/1163617/the-evolution-of-the-nist-secure-hash-algorithm-from-sha-1-to-sha-3

Link Aggregation

● Hashing based on L2/L3/L4 is distributing network flows across the
links in the LAG, hash collisions can happen!

● Without explicit load balancing some links can be congested!

– Not good for long-lived data flows/streams

● Idea: Since DAQ network is static and the actual traffic pattern is
known, we can distribute the expected traffic evenly

– This will make use of full LAG bandwidth and eliminate any
possible collisions

– We need to know the HASH function! Can we?

10

● Details of hash functions are usually not disclosed

● A LAG simulation software can be available

– For a given network flow parameters (MAC, src/dst IP address and/or
port number) it produces a LAG logical output port/link

● By using a parameter which can be easily changed (port
numbers) a reverse hash table can be created

● Example: LAG with 3 links

– Link 1: {1, 3, 4, 5, 6, 11, …}

– Link 2: {7, 8, 9, 10, 18, 20, …}

– Link 3: {2, 12, 13, 15, 16, 17, ...}

● We can force/bind a TCP/IP stream to a particular LAG
port with some clever algorithm

SW2

SW1

3 x 40 = 120 Gb/s

11

Algorithm

● Problem is two fold (Place and Route)

– Place part

● Find a good destination (RU) for a given set of FEROL sources
(FEDBuilder)

● Minimize switch crossing

● Do not exceed capacity of any physical link

– Route part

● Find a good source port assignments such as the hash function doesn't
have collisions / network traffic don't overlap between LAG links

● Combinatorial problem with factorial time complexity

– Greedy heuristics

● for each destination (RU) a rank is calculated based on the network throughput
it receives, number of FEROLs and number of hops

● RU with the lowest rank is selected (placed)

12

Implementation: DAQ Configurator

Switch to switch link occupancy:
sw-eth-c2e23-08-01 -> sw-eth-c2e23-41-01: Sending 280 Gb/s over a 280 Gb/s link, i.e. 100% of the link bandwidth
sw-eth-c2e24-17-01 -> sw-eth-c2e23-11-01: Sending 200 Gb/s over a 360 Gb/s link, i.e. 56% of the link bandwidth
sw-eth-c2e24-08-01 -> sw-eth-c2e24-41-01: Sending 200 Gb/s over a 280 Gb/s link, i.e. 71% of the link bandwidth
sw-eth-c2e24-11-01 -> sw-eth-c2e24-17-01: Sending 200 Gb/s over a 360 Gb/s link, i.e. 56% of the link bandwidth
sw-eth-c2e23-38-01 -> sw-eth-c2e23-08-01: Sending 200 Gb/s over a 200 Gb/s link, i.e. 100% of the link bandwidth
sw-eth-c2e24-38-01 -> sw-eth-c2e24-08-01: Sending 160 Gb/s over a 200 Gb/s link, i.e. 80% of the link bandwidth
sw-eth-c2e23-11-01 -> sw-eth-c2e23-29-01: Sending 80 Gb/s over a 200 Gb/s link, i.e. 40% of the link bandwidth
...

sw-eth-c2e24-35-01 -> sw-eth-c2e24-08-01: Sending 80 Gb/s over a 200 Gb/s link, i.e. 40% of the link bandwidth
sw-eth-c2e24-23-01 -> sw-eth-c2e24-11-01: Sending 80 Gb/s over a 200 Gb/s link, i.e. 40% of the link bandwidth
sw-eth-c2e24-20-01 -> sw-eth-c2e24-11-01: Sending 80 Gb/s over a 200 Gb/s link, i.e. 40% of the link bandwidth
sw-eth-c2e23-35-01 -> sw-eth-c2e23-08-01: Sending 80 Gb/s over a 200 Gb/s link, i.e. 40% of the link bandwidth
sw-eth-c2e24-08-01 -> sw-eth-c2e24-32-01: Sending 40 Gb/s over a 200 Gb/s link, i.e. 20% of the link bandwidth
sw-eth-c2e23-11-01 -> sw-eth-c2e23-20-01: Sending 40 Gb/s over a 200 Gb/s link, i.e. 20% of the link bandwidth
sw-eth-c2e23-11-01 -> sw-eth-c2e23-23-01: Sending 40 Gb/s over a 200 Gb/s link, i.e. 20% of the link bandwidth
sw-eth-c2e23-11-01 -> sw-eth-c2e23-26-01: Sending 40 Gb/s over a 200 Gb/s link, i.e. 20% of the link bandwidth
sw-eth-c2e24-26-01 -> sw-eth-c2e24-11-01: Sending 40 Gb/s over a 200 Gb/s link, i.e. 20% of the link bandwidth

● Algorithms implemented in Java, part of DAQ Configurator tool:

13

DAQ Configurator: RU Placing

14

DAQ Configurator: Stream Routing

15

Infiniband Event Building Network

Underground

Surface

16

CMS Infiniband EVB network
17

¡  central part of event builder
¡  assembles full events

¡  all destinations need to receive
from all sources

¡  full NxM connectivity needed

¡  12 leaf, 6 spine switches

¡  36 FDR (56 GBit/s) ports per switch

¡  3 links between each leaf/spine
pair

¡  18 x 12 = 216 external ports
¡  ~ 6 Tbit/s bandwidth

12 leaf switches 6 spine switches

Infiniband forwarding
¡  Infiniband uses Local Identifiers (LIDs) for addressing

¡  16 bits
¡  assigned by subnet manager (SM) when nodes or SM comes up
¡  used in the Local Route Header:

¡  differences to other protocols:
¡  does not allow strict source routing like Myrinet

¡  all packets for a given destination LID go out on the same port on a given switch
¡  no hash functions for trunks like for Ethernet
¡  but can have multiple LIDs per network card

¡  16 bit LID can be seen as having the same function as the 64 bit Ethernet MAC address
¡  instead of using a content addressable memory like in Ethernet switches, the linear

forwarding table (LFT) is an array of 12 kBytes
¡  address is destination LID
¡  content is output port

18

Routing engines
¡  Subnet manager generates forwarding tables

¡  Mellanox Infiniband switches have an embedded OpenSM
¡  OpenSM can also be run on any server connected to Infiniband network

¡  allows for more flexibility
¡  each subnet manager is assigned a priority

¡  highest priority manages the network
¡  lower priority SM are in standby

¡  Available routing engines in OpenSM:
¡  minhop (default)
¡  updn
¡  dnup
¡  ftree
¡  file
¡  lash
¡  dor
¡  torus-2QOS
¡  dfsssp
¡  sssp

19

our default for folded
Clos network

our gateway to our
own static routing
tables

Routing algorithm
¡  The default fat tree routing algorithm does not assume anything

about the actual traffic pattern
¡  should not matter in theory as long as one does send more than

from any of the N sources to any of the M destinations

¡  in practice however:

¡  our links are temporarily oversubscribed (‘bursty traffic’)

¡  we must wait for the slowest source

¡  head of line blocking is most likely an issue

¡  Idea: since we know the actual traffic pattern, we can distribute the
expected traffic evenly
¡  this should eliminate bottlenecks

¡  make use of links which otherwise would have low utilization

20

linespeed
max(N,M)

Algorithm
¡  Problem formulation:

¡  minimize spread of

¡  number of communications over the spine switches or

¡  number of communications over the links between leaf and spine
switches

¡  etc.

¡  subject to:

¡  do not exceed capacity of any link

¡  communications to the same destination on a switch must continue
over the same links

¡  Looks like a combinatorial problem with factorial time complexity
¡  use a heuristic:

¡  go through all (source → destination) pairs

¡  assign route over leaf switch with least occupancy so far

¡  if not already constrained by previous routing table entries

21

Implementation
¡ Algorithm is implemented in python

⊕ fast turnaround to try out new algorithms

⊕ algorithm core separated from ‘framework’ code�

⊕ independent of OpenSM �
⊖ only static forwarding tables possible

 no adaptation to actual throughput as luminosity decreases
 with time

¡  Here be dragons:

¡  during early stages of development, managed to bring down the entire
Infiniband network, power cycle needed

¡  need to assign all forwarding table entries, including those to LIDs of
switches

¡  diagnostics such as ibqueryerrors will not work otherwise

22

Performance
23

Fragment Size (bytes)
300 400 1000 2000 3000 10000

Th
ro

ug
hp

ut
 o

n
R

U
 (M

B/
s)

0

1000

2000

3000

4000

5000

02 Mar 2016

Ev
en

t R
at

e
at

 E
VM

 (k
H

z)

0

50

100

150

200

250

300

350CMS Preliminary8 streams per RU
48x48 (custom)
72x72 (custom)
48x48 (default)
72x72 (default)

from Remi Mommsen’s talk

16 (40) % improvement for 72x72 (48x48) system
less sensitive to actual list of sources and destinations

Finding bottlenecks in the IB network
¡  Infiniband supports many diagnostic

counters

¡  Some confusion how to interpret the value
¡  initially did not know about the ‘multiplier’

register (factor 32…)
¡  checked with manufacturer about the exact

length of a ‘tick’ (depends on the signalling
speed)

¡  These counters can be accessed over the
network
¡  ibqueryerrors allows to retrieve them from all

ports in the network in one go

¡ we now periodically store PortXmitWait
counter values in a database

24

sources leaf Switches dests.

spine switches

unfolded view

blocking counters example (72x72 setup)
25

source PCs output leaf switch to spine switch

spine switch back to leaf switch

leaf switch to destination PC

Summary / Outlook
¡ Ethernet:
¡  installed a fat tree topology for data aggregation
¡ gives us additional flexibility in case of PC failure

¡  implemented a configuration dependent routing
¡ knowledge of LAG hash functions vital

¡ Infiniband:
¡ custom routing gives us better use of the available capacity

¡ diagnostic counters are a useful tool to identify
bottlenecks in the network

¡ routing can potentially be improved by taking into
account actual fragment sizes

¡ use of multiple virtual lanes may reduce head of line
blocking

26

	Ethernet-FEDBuilder-DAQ-LHC-v3.0.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

