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Overview 

¡ Ethernet data concentrator network 
¡ Fat tree topology  
¡ long lasting TCP connections: importance of 

hash functions 
  

¡ Infiniband 
¡ custom forwarding tables for improved 

performance 
¡ blocking counters 
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Data Concentration Ethernet 
Network in CMS

 (Fat-Tree)



Data Concentration Network

Underground

Surface
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Data Concentration Network

● Plays a key part in data concentration

– Sources 10GbE optical links from ~600 FEROLs (10 GbE TCP/IP)

– Sinks 40GbE optical links to 108 Readout Units (RU)

– Designed as a Fat-Tree Network with three switching layers

– FEROLs and RUs connected to leaf switches 

– 360 Gbit/s between top and middle layer

– 200/280 Gbit/s between leaf and middle layer
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Middle layer
4x 40GbE SX1036

Leaf switches
14x 10/40GbE
  2x 40 GbE

Top layer
1x 40GbE

120 copper
cables deployed
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The Fattest Test

9x iperf running in parallel:
Connecting to host ru-c2e12-24-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.5 Gbits/sec
Connecting to host ru-c2e12-25-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.6 Gbits/sec
Connecting to host ru-c2e12-26-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.6 Gbits/sec
Connecting to host ru-c2e14-24-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.6 Gbits/sec
Connecting to host ru-c2e14-25-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.6 Gbits/sec
Connecting to host ru-c2e12-30-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.6 Gbits/sec
Connecting to host ru-c2e12-34-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.6 Gbits/sec
Connecting to host ru-c2e12-35-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.5 Gbits/sec
Connecting to host ru-c2e14-30-01.fbs0v0.cms, port 5201: [  4] 0.00-10.00  sec  39.5 Gbits/sec 

360 Gb/s

360 Gb/s
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DONE?



Fat-Tree and Link Aggregation

● A LAG (Link Aggregation Group) / port trunking 

– Combines a number of physical ports together to make a single
high-bandwidth data path 

– Uses a load-balancing method (hash function) for packet
distribution, usually a combination of

● L2 (MAC Address)

● L3 (IP address)

● L4 (TCP/UDP port numbers)
9



* http://www.answers.com/article/1163617/the-evolution-of-the-nist-secure-hash-algorithm-from-sha-1-to-sha-3

Link Aggregation

● Hashing based on L2/L3/L4 is distributing network flows across the
links in the LAG, hash collisions can happen!

● Without explicit load balancing some links can be congested!

– Not good for long-lived data flows/streams 

● Idea: Since DAQ network is static and the actual traffic pattern is
known, we can distribute the expected traffic evenly

– This will make use of full LAG bandwidth and eliminate any
possible collisions

– We need to know the HASH function! Can we?
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● Details of hash functions are usually not disclosed

● A LAG simulation software can be available

– For a given network flow parameters (MAC, src/dst IP address and/or
port number) it produces a LAG logical output port/link

  

● By using a parameter which can be easily changed (port
numbers) a reverse hash table can be created

● Example: LAG with 3 links

– Link 1: {1,   3,   4,   5,   6, 11, …}

– Link 2: {7,   8,   9, 10, 18, 20, …}

– Link 3: {2, 12, 13, 15, 16, 17, ...} 

● We can force/bind a TCP/IP stream to a particular LAG
port with some clever algorithm

SW2

SW1

3 x 40 = 120 Gb/s
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Algorithm

● Problem is two fold (Place and Route)

– Place part 

● Find a good destination (RU) for a given set of FEROL sources
(FEDBuilder)

● Minimize switch crossing 

● Do not exceed capacity of any physical link

– Route part

● Find a good source port assignments such as the hash function doesn't
have collisions / network traffic don't overlap between LAG links

● Combinatorial problem with factorial time complexity

– Greedy heuristics

● for each destination (RU) a rank is calculated based on the network throughput
it receives, number of FEROLs and number of hops

● RU with the lowest rank is selected (placed)
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Implementation: DAQ Configurator

Switch to switch link occupancy:
sw-eth-c2e23-08-01 -> sw-eth-c2e23-41-01:  Sending 280 Gb/s over a 280 Gb/s link, i.e. 100% of the link bandwidth 
sw-eth-c2e24-17-01 -> sw-eth-c2e23-11-01:  Sending 200 Gb/s over a 360 Gb/s link, i.e.  56% of the link bandwidth 
sw-eth-c2e24-08-01 -> sw-eth-c2e24-41-01:  Sending 200 Gb/s over a 280 Gb/s link, i.e.  71% of the link bandwidth 
sw-eth-c2e24-11-01 -> sw-eth-c2e24-17-01:  Sending 200 Gb/s over a 360 Gb/s link, i.e.  56% of the link bandwidth 
sw-eth-c2e23-38-01 -> sw-eth-c2e23-08-01:  Sending 200 Gb/s over a 200 Gb/s link, i.e. 100% of the link bandwidth 
sw-eth-c2e24-38-01 -> sw-eth-c2e24-08-01:  Sending 160 Gb/s over a 200 Gb/s link, i.e.  80% of the link bandwidth 
sw-eth-c2e23-11-01 -> sw-eth-c2e23-29-01:  Sending 80 Gb/s over a 200 Gb/s link, i.e.  40% of the link bandwidth
... 

sw-eth-c2e24-35-01 -> sw-eth-c2e24-08-01:  Sending 80 Gb/s over a 200 Gb/s link, i.e.  40% of the link bandwidth 
sw-eth-c2e24-23-01 -> sw-eth-c2e24-11-01:  Sending 80 Gb/s over a 200 Gb/s link, i.e.  40% of the link bandwidth 
sw-eth-c2e24-20-01 -> sw-eth-c2e24-11-01:  Sending 80 Gb/s over a 200 Gb/s link, i.e.  40% of the link bandwidth 
sw-eth-c2e23-35-01 -> sw-eth-c2e23-08-01:  Sending 80 Gb/s over a 200 Gb/s link, i.e.  40% of the link bandwidth 
sw-eth-c2e24-08-01 -> sw-eth-c2e24-32-01:  Sending 40 Gb/s over a 200 Gb/s link, i.e.  20% of the link bandwidth 
sw-eth-c2e23-11-01 -> sw-eth-c2e23-20-01:  Sending 40 Gb/s over a 200 Gb/s link, i.e.  20% of the link bandwidth 
sw-eth-c2e23-11-01 -> sw-eth-c2e23-23-01:  Sending 40 Gb/s over a 200 Gb/s link, i.e.  20% of the link bandwidth 
sw-eth-c2e23-11-01 -> sw-eth-c2e23-26-01:  Sending 40 Gb/s over a 200 Gb/s link, i.e.  20% of the link bandwidth 
sw-eth-c2e24-26-01 -> sw-eth-c2e24-11-01:  Sending 40 Gb/s over a 200 Gb/s link, i.e.  20% of the link bandwidth 

● Algorithms implemented in Java, part of DAQ Configurator tool:
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DAQ Configurator: RU Placing
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DAQ Configurator: Stream Routing
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Infiniband Event Building Network 

Underground

Surface
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CMS Infiniband EVB network 
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¡  central part of event builder 
¡  assembles full events 

¡  all destinations need to receive 
from all sources 

¡  full NxM connectivity needed 
 

¡  12 leaf, 6 spine switches 

¡  36 FDR (56 GBit/s) ports per switch 

¡  3 links between each leaf/spine 
pair 

¡  18 x 12 =  216 external ports 
¡  ~ 6 Tbit/s bandwidth 

12 leaf switches 6 spine switches 



Infiniband forwarding 
¡  Infiniband uses Local Identifiers (LIDs) for addressing 

¡  16 bits 
¡  assigned by subnet manager (SM) when nodes or SM comes up 
¡  used in the Local Route Header: 

 
 
 
 
 
 
 
 

¡  differences to other protocols: 
¡  does not allow strict source routing like Myrinet 

¡  all packets for a given destination LID go out on the same port on a given switch 
¡  no hash functions for trunks like for Ethernet 
¡  but can have multiple LIDs per network card 

¡  16 bit LID can be seen as having the same function as the 64 bit Ethernet MAC address 
¡  instead of using a content addressable memory like in Ethernet switches, the linear 

forwarding table (LFT) is an array of 12 kBytes 
¡  address is destination LID 
¡  content is output port  
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Routing engines 
¡  Subnet manager generates forwarding tables 

¡  Mellanox Infiniband switches have an embedded OpenSM    
¡  OpenSM can also be run on any server connected to Infiniband network 

¡  allows for more flexibility 
¡  each subnet manager is assigned a priority 

¡  highest priority manages the network 
¡  lower priority SM are in standby 

¡  Available routing engines in OpenSM: 
¡  minhop (default) 
¡  updn 
¡  dnup 
¡  ftree 
¡  file 
¡  lash 
¡  dor 
¡  torus-2QOS 
¡  dfsssp 
¡  sssp 

19 

our default for folded 
Clos network 

our gateway to our 
own static routing 
tables 



Routing algorithm 
¡  The default fat tree routing algorithm does not assume anything 

about the actual traffic pattern 
¡  should not matter in theory as long as one does send more than  

from any of the N sources to any of the M destinations 

¡  in practice however: 

¡  our links are temporarily oversubscribed (‘bursty traffic’) 

¡  we must wait for the slowest source  

¡  head of line blocking is most likely an issue 
 

¡  Idea: since we know the actual traffic pattern, we can distribute the 
expected traffic evenly 
¡  this should eliminate bottlenecks 

¡  make use of links which otherwise would have low utilization 
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linespeed
max(N,M )



Algorithm 
¡  Problem formulation: 

¡  minimize spread of 

¡  number of communications over the spine switches or 

¡  number of communications over the links between leaf and spine 
switches  

¡  etc. 

¡  subject to:  

¡  do not exceed capacity of any link 

¡  communications to the same destination on a switch must continue 
over the same links 
 

¡  Looks like a combinatorial problem with factorial time complexity 
¡  use a heuristic: 

¡  go through all (source → destination) pairs  

¡  assign route over leaf switch with least occupancy so far  

¡  if not already constrained by previous routing table entries 
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Implementation 
¡ Algorithm is implemented in python 

⊕ fast turnaround to try out new algorithms 

⊕ algorithm core separated from ‘framework’ code�

⊕ independent of OpenSM �
⊖ only static forwarding tables possible 

 no adaptation to actual throughput as luminosity decreases  
 with time 

 
¡  Here be dragons: 

¡  during early stages of development, managed to bring down the entire 
Infiniband network, power cycle needed 

¡  need to assign all forwarding table entries, including those to LIDs of 
switches 

¡  diagnostics such as ibqueryerrors will not work otherwise   
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Performance 
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Finding bottlenecks in the IB network 
¡  Infiniband supports many diagnostic 

counters 
 
 
 
 

¡  Some confusion how to interpret the value 
¡  initially did not know about the ‘multiplier’ 

register (factor 32…) 
¡  checked with manufacturer about the exact 

length of a ‘tick’ (depends on the signalling 
speed) 

¡  These counters can be accessed over the 
network 
¡  ibqueryerrors allows to retrieve them from all 

ports in the network in one go 
 

¡ we now periodically store PortXmitWait 
counter values in a database 
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sources leaf Switches dests. 

spine switches 

unfolded view 



blocking counters example (72x72 setup) 
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source PCs output  leaf switch to spine switch 

spine switch back to leaf switch 

leaf switch to destination PC  



Summary / Outlook 
¡ Ethernet: 
¡  installed a fat tree topology for data aggregation 
¡ gives us additional flexibility in case of PC failure 

¡  implemented a configuration dependent routing 
¡ knowledge of LAG hash functions vital 

 
¡ Infiniband: 
¡ custom routing gives us better use of the available capacity 

¡ diagnostic counters are a useful tool to identify 
bottlenecks in the network 

¡ routing can potentially be improved by taking into 
account actual fragment sizes 

¡ use of multiple virtual lanes may reduce head of line 
blocking 
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