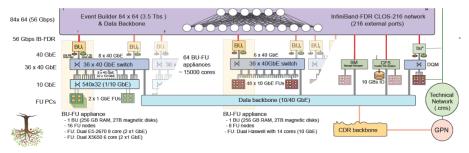
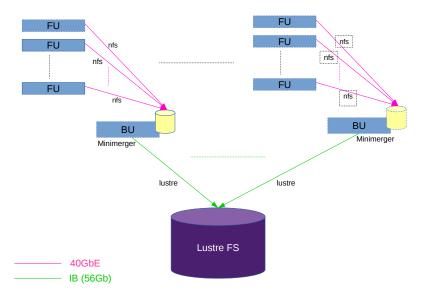
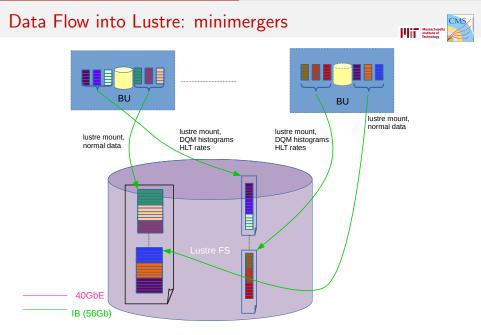
CMS experience with the deployment of Lustre


Lavinia Darlea, on behalf of CMS DAQ Group

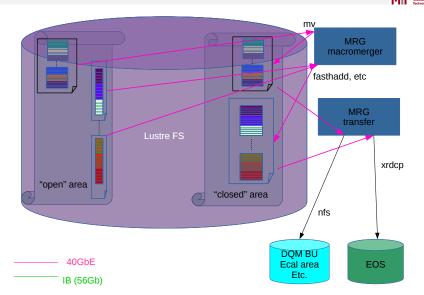
April 12, 2016

CMS DAQ2 System


Storage Manager and Transfer System (SMTS) in the DAQ chain


SMTS and DAQ

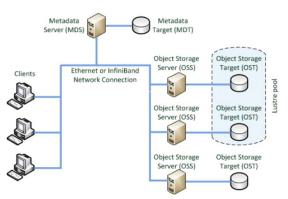
- input: output of the Data AcQuisition chain
- Lustre FS: ensure safe temporary storage
- output: transfer to Tier0


Data Flow into Lustre: overview

Data Flow into and out of Lustre: macromergers and transfer

CMS,

Storage and Transfer System Requirements


Storage and Transfer

Requirement	In	Out	Total
Space			250TB
Mergers Bandwidth	3GB/s	~0.3GB/s	3.3GB/s
Transfers Bandwidth	-	3GB/s	3GB/s
Total Bandwidth	3GB/s	3.3GB/s	6.3GB/s
Nb of files*	\sim 2840 files/LS	\sim 2780 files/min	\sim 2840 files/min

*In: create; Out: destroy

computation: (20 streams \times 1 data file)/LS, (20 streams \times 2 jsns \times 70 BU)/LS, (1 lock file \times 20 streams)/LS

Lustre FS architecture

- current Intel Enterprise Edition for Lustre version: 2.2.0.2
- servers: 6 DELL R720
 - 2 MDS nodes in active/passive failover mode
 - 4 OSS nodes, each controls 6 OSTs in pairs of active/passive failover mode

Rack view – MDT (low), 1 OST controller and 1 disk shelves expansion enclosure

Meta-Data Configuration

- 16 drives of 1TB in 1 volume group, 8 hot spares
- only 10% of the disks capacity is used in order to increase performance
- partitions: 10GB for MGT (special partition which serves as entry point for the clients connections), 1TB for MDT

redundancy: RAID6

Massach Institute

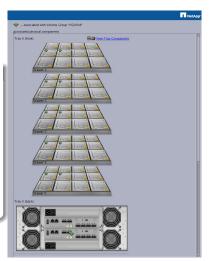
MDT: NetApp E2724 front and rear view

Object Storage Configuration

- 2 OST controllers: NetApp E5560
- each controller manages one disk expansion enclosure DE6600
- each disk shelf enclosure contains 60 disks of 2TB each
- total raw disk space: 240 disks x 2TB = 480 TB
- physical installation: 2 racks, 1 controller and its expansion enclosure per rack

9/22

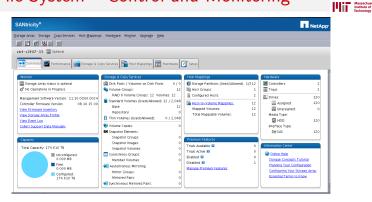
Front OST


Disk shelves

OST: Volume Configuration

- each controller/expansion shelf is organized in 6 RAID6 volume groups (8+2 disks)
- the volume groups are physically allocated vertically to ensure resilience to single shelf damage
- total usable space: 349TB

Volumes configuration



High Availability

- volumes distribution provides full shelf failure redundancy
- all volumes are RAID6
- all devices (controllers, shelves, servers) are dual powered (normal and UPS)
- all servers configured in active/passive failover mode via corosync/pacemaker: MDS in neighbouring racks, OSS within the same rack
- LFS nominal availability: 40GbE and InfiniBand (56Gb) data networks*

Massa Institu CMS experience with Lustre FS Lustre FS Implementation

Lustre File System - Control and Monitoring

SANtricity

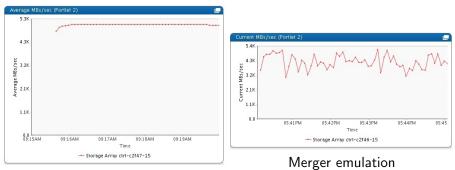
- GUI monitoring bandwidth usage per controller
- reports detailed text bandwidth usage per volume
- provides useful information and alerts on hardware status

CMS

Lustre File System – Control and Monitoring

Managemeet Server min.c2 Metadata Server min.c2 OST4: 24 Altertie V Hit Automoti Action o Update Advanced Setter	00-05-05 cmms alefts 5 *	144TB/349TB	2.88M/537M files				
Management Target							
		Volume	Primary server	Fallover server	Started an		
Show 10 • entries Name hb25	*	Volume 2005/0000005508/s000000665/1729/69	Primary server mis-c200-05-05 pms	Failover server	Started on mix c216-65-01.cms	Actions *	
Name	*					Actors * Stop Pallover	*
Name http: isowing 1 to 1 of 1 writing Addadata Target	*					Stop	*
Name bb25 Showing 1 to 1 of 1 writing Addiadation Tanget Show 10 * onthins	*					Stop	•
Name blisi Showing 1 to 1 of 1 entries	*	Secondeecootseaucoocees.c72wea	másc2006-06-66. ams	nde-sähl?-söd ann	más cöltő 45-01.cms	Stop	*

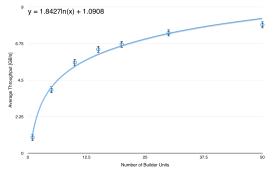
IML: Intel Management for Lustre


- (+) mostly used for control and base FS operations (failover, startup, shutdown)
- (+) the dashboard provides useful information for debugging an overloaded system
- (-) painful installation procedure
- (-) not fully reliable: fake BMC monitoring warnings, false status reports upon major FS failures

Ma: Inst

Bandwidth Validation

The plotted values are per controller. The 2 controllers were perfectly balanced.



Commissioning Acceptance

Proven steady 10GB/s rate in r/w mode

Proven steady $7.5 \mbox{GB}/\mbox{s}$ rate

Validation

LFS bandwidth benchmarking

Emulation tests using the production computing cluster

- tests performed using different fractions of the available computing farm
- obvious non–linear behaviour with the number of BUs
- transfer system (read operations) were not considered during the tests
- saturation is expected around 8.5GB/s

Production Usage

Heavy lons runs, December 2015

Important lessons

Sensitive points

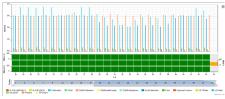
- Lustre is extremely sensitive to network glitches. It needs a very stable and reliable network. Adverse effects can go from individual clients being evicted to the entire FS shutting down
- Lustre is very greedy in terms of resources on the clients
 - unless nominally limited it will take up to 75% of the total RAM for its caching
 - unless nominally limited it will take a huge amount of slab memory to cache its objects (Idlm locks)
- Lustre is very greedy in terms of resources on the servers
 - MDS ideal setup: the MDT should fit entirely in the RAM
 - OSS: by default cache everything. They should be prevented from doing so

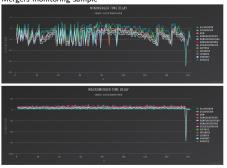
Weekend operation

Metadata Servers

Object Storage Servers

Drag


Conclusion

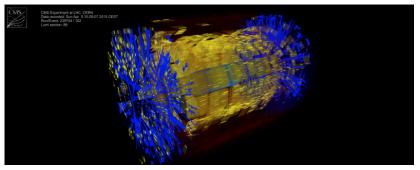

SMTS team interaction with Lustre

- IML can be misleading, but provides very intuitive ways of controlling the FS
- sub-optimal application architecture can artificially increase the load on the FS. Continuous tuning is being performed both at the application and FS level
- a few FS issues have been identified, but they have been mostly fixed
- clients recover pretty fast and painlessly after FS unavailability
- lustre and NetApp's E-Series seem to play nicely together and they deliver the required bandwidth performance
- Intel Lustre support team is reliable, knowledgeable and patient. But located mostly on a different continent

Conclusion

Mergers monitoring sample

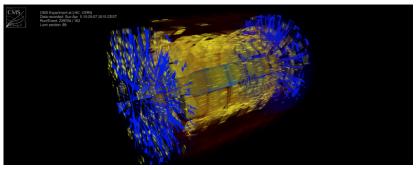
Mergers delays sample


SMTS Behaviour

- mostly stable behaviour in 1 year of production running mode
- general latencies within the requirements
- a few notable glitches, have been followed up and mostly solved

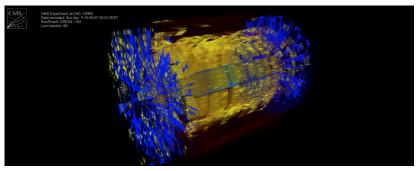
Questions?

Stories...



Event display of one of the first particle splashes seen in CMS during Run2

Stories...



Event display of one of the first particle splashes seen in CMS during Run2

... only a few minutes before one of the OSS servers crashed...

Stories...

Event display of one of the first particle splashes seen in CMS during Run2

... only a few minutes before one of the OSS servers crashed... ... and the failover mechanism failed ...