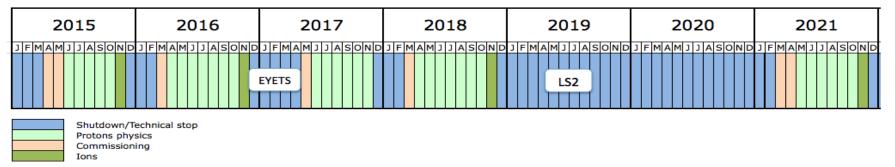
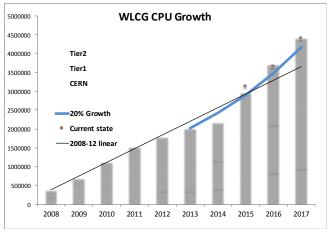


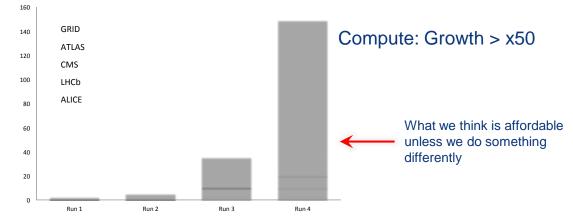
CERN IT Systems Management

Gavin McCance CERN IT-CM

Outline


- General strategy
- Puppet for configuration
- Automation
- Data-centre and service monitoring
- Data-centre capacity plans
- Cloud and containers




LHC compute scaling challenges

The outline LHC schedule out to 2035 presented by Frederick Bordry to the SPC and FC June 2015 can be found here

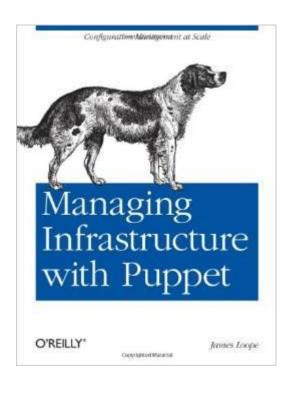
13 April 2016

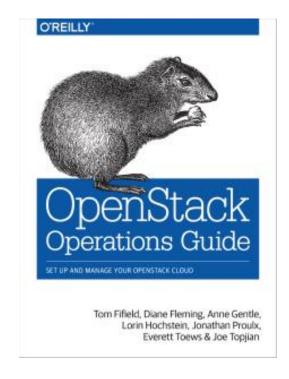
Good News, Bad News

- Additional data centre in Budapest now online
- Increasing use of new facility as data rates increase

But...

- Materials budget decreasing, no more money
- Staff numbers are fixed, no more people
- Legacy tools are high maintenance and brittle
- User expectations are for fast, dynamic selfservice


General strategy


- As we scaled-up and made things more dynamic, our home-baked tools started to break and we struggled to find the effort to fix them
- How can we avoid the sustainability trap?
 - Really try hard to not develop our own stuff
 - Avoid accumulating technical debt
 - The major driver for the Agile Infrastructure was to control the technical debt
- How can we learn from others and share?
 - Find compatible open source communities
 - Contribute back where there is missing functionality
 - Stay mainstream

Are CERN computing needs really special?

O'Reilly Consideration

CERN Tool Chain

Puppet for configuration

- Puppet roll-out has worked well for us
 - ~300 service manager with ~200 distinct hostgroups, both IT and experiment services
- Positive user experience
- Excellent open community support
 - Lots of standard modules
 - We've complemented this with a library of standard CERN configurations
- Solid APIs hooks for automation

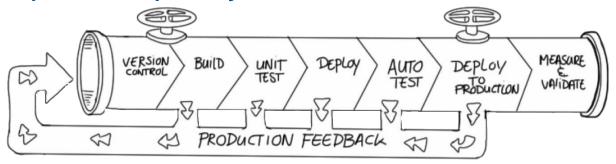
13 April 2016

Why Puppet?

- Several other obvious alternatives (Ansible, Chef, cfEngine,...)
- Puppet's declarative language model fitted our users' expectations (similar to previous tool)
- Centralised service model works well in our environment
- Solid community and good upstream support
 - This is the most critical aspect for anything you might chose
- We've invested in Puppet and we're still very happy
 - We've no plans to move to anything else anytime soon :)

Configuration service plans

- Faster versions of Puppet in the pipeline
- Potentially replace some of our own stuff (e.g. secrets management) with products that community have subsequently released



Focus now on automation

Ops automated testing

 Focus is now on automation to control ops cost as we expand capacity

- "Continuous Deployment" combining gitlab-ci, puppet, Openstack orchestration
 - Aim is to automatically test as much as possible before rolling out a change to production
 - Working on making it easy to do this for all service changes with easy-to-add validation tests for automated "qa" testing

Ops automation tools

- Lots on the open and open++ market
 - Stackstorm, Cloudify, Saltstack, Rundeck, ...
 - Several teams in IT using Rundeck just now
- Aiming at event-based automated recovery
- "Monitoring has not heard from this service for a while / has seen high-load"
 - → kick off a canned investigation / fix job
 - Everything in our infrastructure is now an API
- Rule #42: Only raise to a human when you run out of things to try

Infrastructure monitoring

- 'Lemon monitoring service" backend now replaced by standard, open technologies
- Node metrics collected by Flume
 - Funneled to ElasticSearch for dashboards, Spark for online analysis and Hadoop for subsequent analytics
- Node exceptions (i.e. metrics out of bound) transported by ActiveMQ messaging
 - Can be subscribed to for automation events
 - Main "subscriber" is our ServiceNOW

New infrastructure monitoring (meter.cern.ch, based on Kibana/ES)

Infrastructure Monitoring futures

- Investigating further dashboard technologies and backend data stores
 - Currently ElasticSearch and Kibana
 - InfluxDB as possible backend
 - Graphana as possible dashboard

- Lemon agent replacement -> collectd?
 - Lower maintenance: replace all standard metrics
 - Make it <u>cheap</u> to create new metrics
 - Translation layer for residual Lemon sensors

Service monitoring

- ETF framework (from the WLCG SAM) based around checkMK and Nagios
 - Huge library of service check available
- Currently used for monitoring services across the WLCG for availability reporting
- Extending soon to local service monitoring
 - i.e. is a service doing what it's supposed to be doing
 - Useful directly for service managers
 - e.g. service dashboards
 - ...but also an automated service recovery trigger

Streaming and analytics

- Lemon metric / exception / ETF <u>streams</u> can be monitored in real-time by Spark / Kafka or Esper
 - Register jobs hunting in real-time for more complex patterns ... firing a trigger
 - Event based automation
- Hadoop <u>analytics</u>
 - All data poured into Hadoop

13 April 2016

- Longer term problem investigation using analytics
 - e.g. understanding inefficiencies in the batch system

Physical DC Infrastructure

- CERN Main Data Centre
 - 3.8 MW for computing of which ~2.3 MW currently used
- Remote hosting site (Wigner Data Centre in Budapest)
 - 2.7 MW for computing of which ~1 MW currently used
 - Due to low rack power density, majority of available rack space currently used
 - Contract until end of 2019 but could be extended by 1-2 years (if necessary)

Options for additional capacity

- No firm plans yet.
- No plan to upgrade the Meyrin Data Centre further as it is considered that it would not be cost effective
- Investigating <u>commercial clouds or external hosting</u> as an option for providing additional capacity
- There is the option to do another tender for a <u>remote hosting</u>
 <u>facility</u> such as Wigner either as a sole solution or in combination
 with commercial cloud resources
- A final option, although not yet investigated in any way yet, would be a modular Data Centre addition, similar to the approach foreseen for LHCb and ALICE for post LS2 needs

How to integrate external capacity?

- Critical for ops cost to manage any external resources with same tools as we do here
 - Puppet / common monitoring
 - Possible restricted use-cases

13 April 2016

- Being tested now on IBM Softlayer / TSystems
- Further procurements planned (HNSciCloud)
- Aim to expose (compute) resources only via common HTCondor Ixbatch interface
 - one place to submit to for any CERN compute work

Private cloud

- Happy with Openstack
- Cloud model has allowed us to scale within fixed manpower

- Emulate legacy environment most services moved to VMs
- Enable new ways of working
- But difficult to avoid divergence / segmentation in fixed DC
- Collaborations with open source and industry covers technical debt
 - Future maintenance and testing
 - External mentoring avoids special solutions
 - Enhance staff job opportunities

Private cloud plans

- Keep running the cloud
 - New releases every 6 months
 - Around 2,000 servers / year to renev.
 - Integrate bare-metal management with Openstack
- Change the cloud variety of new things in the pipeline
 - Containers
 - Software Defined Networking
 - Fine grained accounting and quota

openstackTM

CLOUD SOFTWAR

Container technology

- Potentially, a very lightweight way to deploy services
 - Focus on application code and scaling behaviour rather than deployment
- Various use cases: R as a Service, Jupyter notebooks for HEP analysis, pre-packaged batch jobs
- We're testing Magnum from Openstack
 - Will deploy and scale for you a Docker Swarm, Kubernetes or Mesos instance
- Technology evolving very quickly in this space
- Aim to track and offer stable service
 - CERN ITTF: https://indico.cern.ch/event/506245/

Summary

- We'll keep doing configuration with Puppet
- Now focusing on the change testing and recovery automation
- Monitoring based on standard technologies; understanding which tools are best
 - Looking how best to integrate the monitoring with our automation efforts
- Various options for extending compute capacity
 - Validating providers, tools and experiment payloads in various providers now
 - No firm decisions yet
- Private cloud with Openstack very happy with it

13 April 2016

Manpower scaling well

Summary

- Moving to a set of solid, open-source based community products has helped us a lot
- New technologies, as they come along, are typically integrated quickly
 - Though you have to invest manpower to keep things up to date
 - Plus side -> any development effort you do (should be) integrated upstream
- We're happy with the Puppet / Openstack stack ecosystem and would recommend it
- We believe we have a solid base which will serve us for a long time yet

