The Run 3 and 4 Trigger Systems

S. Veneziano Sapienza Universita' di Roma and INFN

many thanks to contributors from ACES 2016 Workshop (in random order: O. Bruning, D. Contardo, E. Perez, D.Sankey, N. Kostantinidis, K. Einsweiler, O. Kortner, D. Newbold, A. Kluge, K. Wyllie, K. Hahn).

Run3 and 4 scenarios

Performance Projections up to HL-LHC:

This presentation tries to explain how we may overcome current technical limits in the (trigger system of the) LHC experiments.

Run3 challenges

- On top of many detector upgrades:
- ATLAS and CMS will face event rates and pile-up levels much higher that the original design values.
 - Trigger adapts to the new environment by:
 - increasing resolution
 - increasing granularity
 - performing pile-up subtraction
 - improving muon system
 - introducing track finding
 - increasing complexity of Global Trigger selections.
 - keeping low energy thresholds, most useful to do physics with electro-weak scale particles.
- ALICE, requiring a large sample of events recorded for high precision measurements of rare probes at low Pt:
 - will readout all Pb-Pb interaction at 50 kHz
- LHCB need for improving statistics by increasing luminosity to 2x10³³ cm⁻² s⁻¹:
 - will improve efficiency and trigger algorithms by
 - using data from every bunch crossing
 - building a software trigger
- Extensive electronics upgrades needed by all experiments:
 - Substantial increase in bandwidth and processing requirements.

CMS Trigger Phasel Upgrade

CMS decision for early upgrade in 2013-2015

CMS Calo Trigger for Run2 and Run3

- increased resolution of detector information entering trigger
- higher trigger tower granularity, selection on cluster shape of e/ gamma, tau objects
- event by event pile-up subtraction

 seamless coverage of detector by time-multiplexed architecture (new trigger paradigm)
 modular electronics (µTCA format) based on large FPGA and many 10 Gb/s links (up to 144 RX/TX on MP7).

Hardware Processor Platforms

- MP7 (calo Layer-2, BMTF, GMT, GT)
 - ▶ 144Tx/Rx 10Gb/s optical links
- V7 690 FPGA
- CTP7 (calo Layer-1)
 - 67Tx, 48Rx 10Gb/s optical links, backplane IO
 - V7 690 FGPA
- MTF7 (Endcap, overlap track finders)
 - Large input IO (84 Rx 10Gb/s links)
 - Large 1GB LUT in external RAMs
- All boards in microTCA format
 - Common interface to DAQ, timing, etc
 - Modular design with optical IO for max. flexibility
 - microTCA telecoms format chosen to give access to commercial infrastructure components

CMS Muon Trigger for Run2 and Run3

- Phasel upgrades foresee new endcap stations (CSC+RPC 4th) and CSC ME1/1 with increased granularity
- Muon trigger moves:
 - from:
 - muon candidates from sub-detectors and late merging
 - to:
 - muon tracks combining regional information from all detectors present in that region

- better muon pT resolution to avoid trigger rate blowup
- better muon track-finding algorithms, including in overlap regions

CMS trigger in Phase-I

- many Phase-I trigger upgrade items have been already successfuly deployed. Successful new developments:
 - mass deployment of MicroTCA electronics (not likely for Run4).
 - parallel operation of new and legacy systems.
 - introduction of time-multiplexed architecture (possible adoption in Run4 by ATLAS).
 - Common approach on handling of large firmware projects common tool (SWATCH) to handle: architecture, simulation, test, deployment.
- Run3 will see additional muon coverage and additional Global trigger algorithms.
 - Aim for 100 kHz Level-1 trigger rate in Run2.

FTK architecture

Phase-I Upgrade anticipated to Run2

The Fast Tracker feeds HLT with **full scan tracking at 100 kHz (p_T > 1 GeV)**

Combination of ATCA and VME cards

- 8192 ASICs (65nm)
 - 1 billion patterns
 - ~2000 FPGAs
 - Thousands of I/O links up to 10 Gb/s

ćm

Forward SCT

Pixel Detectors

FTK HW arriving at CERN

FTK full scan tracking at 100 kHz. Reconstruct up to O(30M) track/s 2016 goal: commission barrel only system

AM06: 65nm ~160mm² Working at 100 MHz (nominal speed)

- Now: package more for this summer
- July: produce more
 AM06 for next year

FTK Input and Output cards fully produced Now: being installed and commissioned

10/32 modules already installed and operated in 2015

Core processing cards produced or in production soon

- July 2016: 12.5% processing power installed
 - Barrel only system
- April 2017: 25% processing power installed
 - Full coverage
- 2018: full system installed
 - Full coverage & full processing power

ATLAS Trigger and DAQ after Phase-I upgrade

Phase-I upgrades foresee:

- having a powerful L1Calo using increased granularity to achieve better isolation
- keeping low energy thresholds;
- \cdot the Muon Endcap Trigger will suppress fake rate using New Small Wheel detectors;

It will be achieved with:

- an upgraded L1Trigger: a real-time, low latency path using:
 - Multi-Gbps (6.4-12.8 Gbps) optical IOs
 - Algorithms implemented in large FPGAs
 - ATCA (VME) boards hosting multiple interconnected FPGAs using Multi-Gbps links.
 - Example: jFEX:
 - ATCA board, 5 FPGAs
 - 240 x 11.2 (6.4) Gbps inputs,
 - 48 x 11.2 (6.4) Gbps Outputs,
 - 120 x 11.2 (6.4) Gbps inter-FPGA connections.

L1Calo Phase-I Upgrade

The L1Calo upgrade will use **improved segmentation supercell data**, and **implement three "Feature Extractors" (FEX's)** which will process the supercell data. The eFEX will identify electrons and photons, the jFEX will identify standard jets, do calculations of MET, HT, and the gFEX will identify large-R jets, do calculations of MET, HT. **Prototypes availablee for gFEX, eFEX and support modules**

ATLAS Phase-I Muon Trigger

Endcap muon trigger algorithm

Level1 Trigger fake rejection

Fake rate reduction in the forward region New Endcap Sector Logic prototype available using the New Small Wheel detector

- NSW Electronics comprises
 - 4 custom ASICs: VMM, ROC, TDS, ART
 - 4 custom on-detectors boards (FEBs, ADDC, L1DDC)
 - Trigger electronics on-detector (rim)
 - Trigger processor in USA15
- New Sector Logic and New Muon to Central Trigger Processor Interface

LHCB Upgrade

- Upgrade philosophy (foreseen in LS2, for Run3)
 - Remove existing L0 hardware trigger
 - Readout all detector data @ 40 MHz
 - Triggering is 100% in software running in PC farm

- Data compression on front-end driven by link cost:
 - 15000 links needed (4.8 Gb/s)
- Baseline choice for backend electronics is PCIe format.

LHCB Upgrade R&D

- Heavy use of flash-based FPGAs for on-detector readout and trigger (not all on software ?) processing:
 - example below: Calorimeter
- Common readout board based on PCIe.

ALICE Upgrade in LS2

- High precision measurements of rare probes at low pT cannot be selected with a trigger:
 - factor 100 gain in statistics reading out all Pb-Pb interactions at 50 kHz.
 - online data reduction necessary reconstructing clusters and tracks, no filtering.

ALICE Upgrade R&D Common read-out unit – PCI40 🛞

CRU performs data compression:

• Example: TPC cluster finder in FPGA.

> from 160 Gb/s • to < 80 Gb/s

Run4 Challenges

- Need to target operations of CMS and ATLAS up to 7.5 x 10^{34} cm⁻²s⁻¹ with a µ of 200 collisions per bunch crossing.
- To fully explore the EW scale trigger thresholds should remain comparable to what they are in Run2.
- Trigger and DAQ Upgrades are necessary: in addition to Detector Upgrade it is necessary to readout the largest possible subset of data at 40 MHz:
 - Higher granularity, early access to full calorimeter data
 - Tracker becomes crucial
 - Additional detectors improving Muon Trigger Pt resolution
 - Large processing power and bandwidth for data treatment in off-detector electronics.
- Different approaches chosen by CMS and ATLAS.

pT>2 GeV @ 40 MHz

Trigger/DAQ Architecture

- L1-Trigger
 - 12.5 s latency, 750 kHz accept rate at 200 PU (see next slide)

Trigger timing, throttling and control ٠

High bandwidth bi-directional link allowing trigger information to steer readout

• DAQ

- Similar event builder, HLT & storage as present •
- Increase bandwidth 800 links x 100 Gbps to provide 30 Tbps throughput at 30% occupancy
- HLT •
 - Processing power scales as PU x L1 rate ≈ 52 wrt Run 2 at 200 pileup - need to develop improved software using new computing technics beyond gain at constant resources
 - HLT rejection 1/100 (as current system)

CMS - 200 PU Detectors 40 MHz | 1 Muons ^{ile} 12.5 μs Ш Calorimeters Tracks 750 kHz Readout buffers 4.5 MB evt size Switching 30 Tbps network Processo farra 11 MHS06 HLT 7.5 kHz 40 GB/s

21

• On top of new Tracker, Calorimeter (improved S/N and time resolution) and High Granularity Endcap Calorimeters, new forward Muon detectors up to eta 3-6:

> Track information will be used in the trigger (selfseeding):

- Tracker FE identifies high transverse momentum stubs.
- Latency 12.5 μ s, 750 kHz rate, HLT output 7.5 kHz

F. Meijers's presentation 19

CMS Phase II architecture

- Global trigger correlates L1Tracks with (ele, mu, ...) objects identified by L1Calo and L1Muon who combine information from all detectors.
 - Muons improve pT resolution
 - Electrons match L1Track with e/g candidate: ID
 - Tracker-based isolation improves for electrons and muons
 - Taus identification improves with track+calo
 - Multi object trigger improves by requiring objects from same vertex.

CMS R&D for Phasell

- Formidable technical challenges from L1 track finding:
 - Data rates > 50-100 Tb/ s
 - Occupancy and combinatorics: O(104 hits/BC) at $\mu = 200$
 - Latency 4+1 µs for tracking
- Three R&D projects ongoing

Tracklet demonstrator @ CERN

Split L0/L1 architecture. L0 latency similar to current L1 system.

- L0 based on Phase-I DAQ / Event Filter
 L1Calo and new L0Muon
 Trigger
- L1 latency longer (60 µs) uses L1Track AMbased track finder (2-4 GeV PT), driven by L0 Regions of Interest
- L1Global trigger based on L1Track and fullcalorimeter data and L0Muon

Option for transmitting all data off-detector at L0 rate of 1 MHz. Need for bandwidth and Event Storage.

Need factor 100 of rate reduction in Event Filter.

ATLAS in Phasell

- L0Muon uses information from precision muon chambers (MDT)
- L0Calo will use new digital signals from Tile and New Forward calorimetry.
- L1Track trigger receives Itk data from regions pointed by ROIs defined by L0 and finds tracks above 4 GeV.
 - Factor 5 reduction for MU20 and EM18 with >95% efficiency
 - Track Z0 resolution better than 10mm
 - needs regional readout and pattern recognition to fit within 15µs (L0/L1 scheme)
 - processing by next generation Associative Memory + FPGA.

ATLAS in Phasell

- L1Global processes full granularity calorimeter, L1Tracks and L0Muon information.
 - Time multiplexed architecture.
- Event Filter input rate increases to 400 kHz (1MHz in single-level architecture)
 - hardware-based full event tracking • (FTK++)
 - multi-threading, seamless integration of offline algorithms
 - **General Purpose Graphical** • **Processors (GPGPU) of FPGA.**
 - In single-level architecture • accelerated regional track processing

ŝ

Summary

- Not a simple job to give justice to such an enormous effort like designing, building and operating LHC trigger systems in 23 slides.
- Keywords appearing in Run3 systems: new trigger architectures like Time Multiplexing, Topological Triggers, modular electronics µTCA, ATCA, based on Large FPGAs, hosting O(100) links running at 4.8-12.4 Gb/s. Readout boards based on PCIe. First deployment of online data reduction (and calibration). Timing and trigger distribution based on PON+GBT.
 - Status: already deployed (CMS) or at full-functional prototype stage (others)
- Keywords for Run4 are: self-seeded (CMS) or seeded (ATLAS) tracker systems, full event readout at 400-750 KHz-1MHz. HLT need for large input bandwidth and very performant storage handler. HLT profiting from hardware-based processing, AMs, FPGAs and GPGPUs.
 - Many ongoing R&D projects ongoing.

ATLAS single-level Trigger Architecture

