An infinite cone jet algorithm for identification of boosted W/Z/H

Oleg Zenin

IHEP, Protvino, Russia

Outline

- Motivation
 - 'Fat jet' algorithms in ATLAS
 - Why implement just another one?
- The algorithm:
 - Lorentz invariant
 - Infinite cone
 - Automatic pileup/UE subtraction
 - No need for grooming of the reconstructed jet
- Results:
 - ▶ Tests on $W' \rightarrow WZ$ MC: signal efficiency vs. background rejection is \simeq 50% vs. 1/1.5% for 350 < $\rho_T^W <$ 500 GeV, $|y_W| <$ 4.8

2 / 38

- Tests on $t \overline{t}$ data (13 TeV, $\sim 1/{
 m fb}$)
- Summary

As presented at Jet substructure and jet tagging meeting on Dec, 17: https://indico.cern.ch/event/446073/

Motivation

- No need to reproduce arguments in favour of reconstruction of boosted W/Z/H as a single 'fat' jet
- A number of state-of-the-art 'fat jet' algorithms are routinely used in ATLAS (for exotics, high mass VV production, etc.). A typical chain includes jet reconstruction with a wide cone, removal of soft components from UE, ISR, pileup (grooming) and construction of jet structure variables to discriminate between the two cases:
 - color-neutral massive state ightarrow q ar q
 ightarrow fat jet and
 - \blacktriangleright colored combination of partons \rightarrow fat jet
- The existing algorithms typically involve several free parameters optimized on a case-by-case basis (cf., e.g., CERN-PH-EP-2015-204):
 - cone size $R \sim 1$ of the intital C/A or AntiKt jet
 - ▶ cone $R_{sub} \sim 0.15 0.3$ to find subjets in the fat jet, $f_{cut} \sim O(5\%)$ to remove soft constituents with $\frac{p_T^{subjet}}{p_T^{-}} < f_{cut}$ (trimming)
 - R_{cut} and z_{cut} in *pruning*: drop softer constituent in a pair-wise reclustering if $\Delta R_{12} > R_{cut} \frac{2M_J}{p_J^T}$ or $\frac{p_T^{(2)}}{p_T^{(1+2)}} < z_{cut}$
 - momentum balance y_{12} and mass-drop fraction μ_{12} in *split-filtering*, $\sqrt{y_{12}} = \frac{\min[p_T^{(1)}, p_T^{(2)}]}{m^{(1+2)}} \Delta R_{12}, \ \mu_{12} = \frac{\max[m^{(1)}, m^{(2)}]}{m^{(1+2)}}$: while declustering the initial C/A jet, drop lower mass constituent if $\sqrt{y_{12}} < \sqrt{y_{min}}$ or $\mu_{12} > \mu_{max}$

Motivation: why implement one more algorithm?

- Reconstruction of *color neutral* $X \rightarrow jets$ must be **Lorentz invariant**:
 - \blacktriangleright an interference between radiation off initial $X\to q\bar{q}$ legs and off other color-disconnected legs is suppressed
 - ▶ properties of the hadronic final state in *color neutral* $X \rightarrow q\bar{q}$ depend only on m_X and its polarization, there's no dependence on $p_T(X)$
 - ► ⇒ no fixed cone, use only invariant combinations of objects' momenta to form the metrics for pair-wise object merging
- Unrelated soft components (UE, pileup) are to be rejected in course of jet reconstruction:
 - compare probability of occasional combination of two objects with the probability to produce them by splitting a single parent $\sim q \rightarrow qg$, $g \rightarrow gg$, $g \rightarrow gg$, $g \rightarrow q\bar{q}$
- Clustering history should follow the shower history
 - use known QCD splitting kernels as the metrics
- Eliminate the need for grooming on top of reconstruction, just use structure variables like D_2 to discriminate between $W/Z/H \rightarrow q\bar{q}$ and the QCD background
- Minimize the number of free parameters
- Shouldn't be too sophisticated, process specific and CPU consuming as shower deconstuction algorithms using global event topology (cf., e.g., ATLAS-CONF-2014-003)

The algorithm

- Starting from CaloCalTopoClusters with $E_T^{clus} > 0.5, \ 1, \ 2 \ {
 m GeV}$ and $|\eta^{clus}| < 4.8$
- Information from Inner Detector is not used, except for the number of type=1,3 vertices to estimate the pileup in the given event
- 4-momenta of incoming partons estimated from $\Sigma \vec{p}^{clus}$ and $\Sigma \vec{p}^{\ell^{\pm}}$ also participate in the clusterisation (roughly speaking, to classify a part of the hadronic state as an ISR).
- For each pair of objects (single clusters or already merged clusters), a probability of occasional combination w_{comb} (when at least one of the objects comes from pileup+UE with the known density estimated from $N_{vtx1,3}$ and hence with the known probability w_b for the given cluster to originate from pileup+UE) is compared to a probability w_{rad} to obtain this pair by splitting a common parent. If $w_{comb} > w_{rad}$ then the pair is ignored, otherwise the pair is added to the list of candidates for merging. The pair with a maximum w_{rad} weight is merged and assigned a probability to come from signal $w_s = 1-probability$ to come from pileup+UE from the pair's constituent with a maximum w_s (w_s calculation details are on the next slide).
- Objects with 4-momentum Q such that $\sqrt{|Q^2|} > Q_{max} = const \cdot M_W$, where const = 0.1 1 is a free parameter, are excluded from further merging $(|Q^2|$ is used instead of a mass as incoming partons also undergo mergings with final state objects which give $Q^2 < 0.$)

The algorithm: pileup estimate

Density of topoclusters from pileup can be estimated for the known $N_{vt \times 1,3}$.

The distribution does not scale linearly with $N_{vt \times 1,3}$ and thus must be measured directly in MinBias events for each $N_{vt \times 1,3}$. For pileup estimation in the given event, it's convenient to divide ϕ plane into four sectors:

• One centered in ϕ at the maximum of E_T density, $\phi_0 = \sum_{clus} p_T^{clus} \phi^{clus} / \sum_{clus} p_T^{clus}$ and with the half-width \sim leading jet ϕ half-width:

6 / 38

$$\Delta(\phi - \phi_0)^2 = \sum_{clus} p_T^{clus} (\phi^{clus} - \phi^0)^2 \Big/ \sum_{clus} p_T^{clus}$$

• The rest of ϕ space is divided in three equal bins.

The algorithm: pileup vs. signal probabilities

Given an expected value b of pileup/UE clusters in $(\Delta p_T, \Delta \eta, \Delta \phi)$ bin, actually finding there $n \ge 1$ clusters implies a modified probability for a single cluster to originate from pileup/UE:

$$w_b = rac{b}{n} rac{1+b+...b^{n-1}/(n-1)!}{1+b+...b^n/n!} \; ,$$

and hence the probability to originate from the signal $w_s = 1 - w_b$. A probability of an occasional combination of two objects (1) and (2), $w_{comb} = 1 - w_s^{(1)} w_s^{(2)}$, has to be compared with the probability to obtain (1) a (2) by splitting a common parent with 4-momentum $Q = p^{(1)} + p^{(2)}$ (cf. well known QCD splitting kernels, \diamond more on the metrics):

$$w_{rad} \sim \max[w_s^{(1)}, w_s^{(2)}] imes rac{lpha_{S}(Q^2)}{\pi} \cdot C rac{Q_0}{p_0^{(2)}} rac{p_T^{(2)} \Delta p_T^{(2)}}{Q^2} \Delta \eta^{(2)} rac{\Delta \phi^{(2)}}{2\pi}$$

If $w_{rad} < w_{comb}$ then skip the (1)+(2) pair, otherwise add the pair to the list of candidates for merging with a weight w_{rad} .

C is an unknown color factor (C_A for $g \to gg$, C_F for $q \to qg$...) which has to be considered as a second free parameter of the algorithm as we ignore different color combinations. In what follows *C* is fixed so that $\frac{\alpha_S(M_Z)}{\pi} \cdot C = 0.1$.

The algorithm: step by step

- Prepare a list of objects to merge: CaloCalTopoClusters + the two incoming partons with 4-momenta estimated from $\Sigma \vec{\rho}^{clus}$ and $\Sigma \vec{\rho}^{\ell^{\pm}}$
- 2 Define (p_T, η, ϕ) binning to have a meaningful probability, w_b , for any cluster to originate from pileup, given the known $N_{vt \times 1,3}$ in the event
- 3 Load pileup (p_T, η, ϕ) density collected in MinBias events with the same $N_{vt \times 1,3}$
- 4 Assign w_b and $w_s = 1 w_b$ to each cluster as explained on the previous slide.
- 5 For each pair of objects:
 - Find a probability of occasional combination of objects (1) and (2), i.e. that at least one of them comes from pileup/UE, $w_{comb} = 1 w_s^{(1)} w_s^{(2)}$
 - Find a probability w_{rad} to split a hypothetic common parent into objects (1) and (2), see the previous slide.
 - If w_{rad} < w_{comb} go to the next pair, else add (1)+(2) pair to the list of candidates for merging with a weight w_{rad}
- **(**) Merge the pair (1)+(2) with a maximum w_{rad} weight (if it exists) into a single object, assign to the latter a probability to come from the signal $w_s = \max[w_s^{(1)}, w_s^{(2)}]$; otherwise, there's nothing to merge, STOP.
- If $|Q_{(1+2)}^2|^{1/2} > Q_{cut}$ then the merged object is considered a reconstructed jet and excluded from further mergings (if (1) stems from an incoming parton then freeze (2) as an ISR jet and vice versa)
- (1) if any unfrozen objects remain, go to '5'; STOP otherwise.

MC tests: $W' \rightarrow Z(\mu\mu)W(\rightarrow hadrons)$, $M_{W'} = 1$ TeV

Signal: $W'(1 TeV) \rightarrow Z(\mu\mu)W(q\bar{q})$ with truth W: $350 < p_T^W < 500$ GeV, mc15_13TeV.302221.MadGraphPythia8EvtGen_A14NNPDF23L0_HVT_Agv1_VcWZ_llqq_m1000 Background: Z + jets, truth Z: $280 < p_T^Z < 500$ GeV mc15_13TeV.361*.Sherpa_CT10_Zmumu_Pt280_500_{CVetoBVeto,CFilterBVeto,BFilter} Reco. selection: STACO $\mu^+\mu^-$ with $p_T > 20$ GeV, $|\eta| < 2.47$, $71 < M_{\mu\mu} < 111$ GeV; max. p_T Jet, $350 < p_T^J < 500$ GeV, $|y_J| < 4.8$

MC tests: $W'(1 TeV) \rightarrow ZW$, subjet kinematics Upon M_J cut retaining 68% of the signal:

Step back: decluster fat jet into two subjets it was built from, use $\min[p_T^{subjet}/p_T^J] > 0.1$ to discriminate between QCD dijets and dijets from *longitudinally polarized W*

$$R_{J}^{eff} = \frac{\sum {p_{T}^{clus} \Delta R(clus, J)}}{\sum {clus} {p_{T}^{clus}}},$$

not informative after M_{I} cut

MC tests: $W'(1 TeV) \rightarrow ZW$, $C_2^{(1)}$, $D_2^{(1)}$, $\tau_{21}^{(wta)}$

Oleg Zenin (IHEP, Protvino, Russia) An infinite cone jet algorithm for identification of boosted W/Z/H

MC tests: $W'(1 TeV) \rightarrow ZW$, all cuts Before substructure cuts: With all cuts:

13 / 38

MC tests: $W' \rightarrow Z(\mu\mu)W(\rightarrow hadrons)$, $M_{W'} = 500$ GeV

Signal: $W'(500 \, GeV) \rightarrow Z(\mu\mu)W(q\bar{q})$ with truth W: $200 < p_T^W < 250 \, \text{GeV}$, mc15_13TeV.302216.MadGraphPythia8EvtGen_A14NNPDF23L0_HVT_Agv1_VcWZ_llqq_m0500 Background: Z + jets, truth Z: $p_T^Z < 280 \, \text{GeV}$ mc15_13TeV.361*.Sherpa_CT10_Zmumu_Pt140_280_{CVetoBVeto,CFilterBVeto,BFilter} Reco. selection: STACO $\mu^+\mu^-$ with $p_T > 20 \, \text{GeV}$, $|\eta| < 2.47$, $71 < M_{\mu\mu} < 111 \, \text{GeV}$; max. p_T Jet, $200 < p_T^J < 250 \, \text{GeV}$, $|y_J| < 4.8$

MC tests: $W'(500 \, GeV) \rightarrow ZW$, subjet kinematics Upon M_J cut retaining 68% of the signal:

Step back: decluster fat jet into two subjets it was built from, use $\min[p_T^{subjet}/p_T^J] > 0.2$ to discriminate between QCD di-jets and di-jets from *longitudinally polarized W*

$$R_{J}^{eff} = \frac{\sum \limits_{clus} p_{T}^{clus} \Delta R(clus, J)}{\sum \limits_{clus} p_{T}^{clus}},$$

not informative after M_{I} cut

MC tests: $W'(500 \, GeV) \rightarrow ZW$, $C_2^{(1)}$, $D_2^{(1)}$, $\tau_{21}^{(wta)}$

Oleg Zenin (IHEP, Protvino, Russia) An infinite cone jet algorithm for identification of boosted W/Z/H

MC tests: $W'(500 \, GeV) \rightarrow ZW$, all cuts

Before substructure cuts:

With all cuts:

Z._.8W/J._..

pT,y

M, 68% pT___/pT

intermediate mass. • see relaxed cuts in backup

 τ_{21}^{wta}

 $tar{t}$ 13 TeV data, $\mathcal{L}_{int}\simeq 1.4/{
m fb}$

$\begin{array}{l} \textbf{Data preselection:} \\ = 1 \; \mu^{\pm} : \; \mu_{T}^{\mu} > 20 \; \text{GeV}, \; |\eta^{\mu}| < 2.47, \; \texttt{ptcone20} / p_{T}^{\mu} < 0.2; \\ \geq 1 \; \texttt{AntiKt4EMTopoJets:} \; p_{T}^{jet} > 20 \; \text{GeV}, \; |\eta^{jet}| < 2.5, \\ \texttt{MV2c20} > -0.5; \\ \sum E_{T}^{calo} > 300 \; \texttt{GeV} \\ (using \; \texttt{a customized EXOT11 derivation}) \end{array}$

Data&MC selection:

$$\begin{split} &\mu^{\pm}: \, \texttt{ptcone20} / p_{T}^{\mu} < 0.01, \, \cos(\vec{p}_{T}^{\mu}, \vec{E}_{T}^{mis}) > 0.6, \\ &|\vec{p}_{T}^{\mu} + \vec{E}_{T}^{mis}| > 50 \, \text{GeV}; \\ &\geq 1 \, \texttt{AntiKt4EMTopoJets}: \, p_{T}^{jet} > 20 \, \text{GeV}, \, \texttt{MV2c20} > -0.44; \end{split}$$

Leading fat jet: $p_T^J > 150$ GeV, $|y^J| < 4.8$

MC samples:

```
W + jets:
mc15_13TeV.361*.Sherpa_CT10_Wmunu_Pt{0...500}_{CVetoBVeto,
CFilterBVeto.BFilter}
```

```
tī:
```

mc15_13TeV.410000.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5

_nonallhad

• Selections were not optimised, still $W \rightarrow Jet$ peak sitting on a combinatorial background from $t\bar{t}$ is visible \Rightarrow

 $\blacktriangleright D_2^{(1)}$ and $\Delta R(J, b - jet)$ cuts

Sensitivity to Q_{max} (follow-up to the jet substructure meeting)

Do we really need $Q_{max} < m_J$, where $m_J \simeq M(W, Z, H, top, ...)$ is the mass we are targeting? From \triangleright merging metrics it follows that a fat jet with mass m_J is merged from its two sub-jets carrying $x_{1,2}$ fractions of jet momentum if $x_{1,2}p_T^J \gtrsim \frac{m_J^2}{\sqrt{s}}e^{y_J-y_0}$, where $\sqrt{\hat{s}}$ and y_0 are the mass and the rapidity of the hard final state. For lower p_T^J or $x_{1,2}$ the softer subjet is merged with the beam.

Can we reconstruct *t*-quark as a single jet? $(Q_{max} = 3M_W)$ Yes, if $x_{subjet1,2} p_T^t \gtrsim \frac{m_t^2}{\sqrt{3_{t-T}x}} e^{y_t - y_0}$,

where $subjet_{1,2}$ is either W or b-jet and y_0 is the rapidity of $t\bar{t}X$ system in the laboratory frame.

Larger maximum on the plots is W, in case $t \rightarrow Wb$ remains resolved.

Can we reconstruct *t*-quark as a single jet? (continued)

Can we reconstruct *t*-quark as a single jet? (DATA)

Summary

- Jet reconstruction algorithm with an infinite cone and 'in-flight' pileup/UE subtraction gives reasonable results for boosted $W \rightarrow jets$ $(M_W/p_T^W \ll 1)$ without grooming.
- For $W' \rightarrow ZW$, $350 < p_T^W < 500$ GeV, $|y_W| < 4.8$ the algorithm + $\tau_2^{wta}/\tau_1^{wta}$ cut yields 50% signal efficiency and QCD background rejection rate $\simeq 60$, comparable to C/A R = 1.0, 1.2 + grooming + substructure tagging used in ATLAS (cf. CERN-PH-EP-2015-204)
- The algorithm was also tested on $tar{t} o W^\pm bW^\mpar{b} o \ell
 u bar{b}J$ '2015 data
- The algorithm is suitable for reconstruction of boosted t as well, if supplemented by D_2 discrimination.
- The results are very preliminary.

Any feedback would be highly appreciated, thank you!

23 / 38

Backup

Metrics at $Q^2 \sim 1 GeV^2$?

- Can one apply the QCD-motivated metrics at $Q^2 \sim 1$ GeV² i.e., more generally, to clusters rather than to "microjets" well separated in momentum space?
- The microjects must be constructed using a reasonable pileup/UE-proof algorithm which doesn't merge soft clusters at distances greater than the average distance between two pileup/UE clusters in the event, $\Delta R \gtrsim \left(N_{clus}^{PU+UE}/\Delta\eta \cdot 2\pi\right)^{1/2}$
- Two objects with 4-momenta p and k (let $k^0 \sim 1 GeV \ll p^0$, $\Delta R(p, k) = R$) coalesce if

$$\begin{split} N_{rad}|_{R} &\sim \alpha_{S}(p^{0}k^{0}R^{2}) \left[\frac{C}{\pi} \right] \frac{\Delta k^{o}}{k^{0}R^{2}} \frac{\pi R^{2}}{2\pi} > \mu \frac{dN^{\prime o}}{dk^{0}d\Omega} \Delta k^{0}\pi R^{2} \\ &\Rightarrow \alpha_{S}(p^{0}k^{0}R^{2}) \gtrsim 2\pi\mu \frac{dN^{PU}}{dk^{0}d\Omega} k^{0}R^{2} \\ &\Rightarrow \frac{\alpha_{S}(p^{0}k^{0}R^{2})}{2} \gtrsim N^{PU} \Big|_{t=0} \end{split}$$

Let's freeze α_S for $Q^2 < 1 \text{GeV}^2$ at $\alpha_S^{n_{Hav}=5}(1 \text{GeV}^2) \simeq \frac{1}{2}$ so that $\alpha_S < \frac{1}{2}$ at any $Q^2 \Rightarrow$ one needs $N^{PU}|_{\ln \pi R^2} \lesssim \frac{1}{4}$ to merge the clusters rather then treat the pair as a random PU+UE induced combination. In other words, if one expects $\ll 1 \text{ PU+UE}$ clusters in the given phase-space around a harder cluster but still finds a softer cluster there, then the two clusters are merged (and the combination is discarded otherwise) \Rightarrow The metrics is stable w.r.t. PU+UE and can be applied 'as is' for clusterisation of soft/collinear objects.

MC tests: $W'(1 TeV) \rightarrow ZW$, pileup stability

26 / 38

MC tests: $W'(500 GeV) \rightarrow ZW$, leading fat jet p_T

MC tests: $W'(500 \, GeV) \rightarrow ZW$, subjet kinematics vs PU

▲ To main slide

$W'(500\,GeV) ightarrow ZW$, $C_2^{(1)}$, $D_2^{(1)}$, $au_{21}^{(wta)}$ w/o p_{T}^{subjet}/p_{T}^J cut

∢ To main slide

 ϵ_{signal} vs. $\epsilon_{QCD \ bkg}$, $350 < p_T(J) < 500 \ GeV$ (CERN-PH-EP-2015-204)

▲ back to main slide

MC tests: $W'(500 \, GeV) \rightarrow ZW$, pileup stability

MC tests: $W'(500 \, GeV) \rightarrow ZW$, leading fat jet p_T

MC tests: $W'(500 \, GeV) \rightarrow ZW$, subjet kinematics vs PU

▲ To main slide

$W'(500\,GeV) ightarrow ZW$, $C_2^{(1)}$, $D_2^{(1)}$, $au_{21}^{(wta)}$ w/o p_{T}^{subjet}/p_{T}^J cut

▲ To main slide

34 / 38

 $W'(500 \, GeV) \rightarrow ZW$, relaxed fat jet selection At generator level: $200 < p_T^W < 250$ GeV, no y_W cut. Relaxed cuts at reco. level: $150 < p_T^J < 300$ GeV, $|y_J| < 4.8$

Poor p_T^J and m^J resolution:

Oleg Zenin (IHEP, Protvino, Russia) An infinite cone jet algorithm for identification of boosted W/Z/H

35 / 38

tī 13 TeV data vs MC, structure variables

liun[.]0.45

0.4

0.35

- W+light - W+c

W+b

 $tar{t}$ 13 TeV, $0.6 < D_2^{(1)} < 1$ and $\Delta R(J, b-jet) > 1$ cuts

 D_2 definition

$$E_{CF0}(\beta) = 1$$

$$E_{CF1}(\beta) = \sum p_{Ti}$$

$$E_{CF2}(\beta) = \sum p_{Ti}p_{Tj}(\Delta R_{ij})^{\beta}$$

$$E_{CF3}(\beta) = \sum p_{Ti}p_{Tj}p_{Tk}(\Delta R_{ij}\Delta R_{ik}\Delta R_{jk})^{\beta}$$

$$e_2^{(\beta)} = E_{CF2}(\beta)/E_{CF1}(\beta)^2$$

$$e_3^{(\beta)} = E_{CF3}(\beta)/E_{CF1}(\beta)^3$$

$$D_2^{(\beta)} = e_3^{(\beta)}/(e_2^{(\beta)})^3$$

▲ Back to main slide

Reconstructed t mass vs. $m_{W/b}$ (1 < D_2 < 1.6 cut applied)

