

JOINT UNIVERSITYACCELERATOR SCHOOL PARTICLE SOURCES

Thomas ThuillierLPSC53 rue des Martyrs 38026 Grenoble cedex **France** E-mail: thuillier@lpsc.in2p3.fr

JUAS – PARTICULE SOURCES

OUTLINE

- **INTRODUCTION**
- **ELECTRON SOURCES**
	- • **Electron sources**
		- **Thermionic electron source**
		- **Field Emission electron source**
		- **Photo emission electron source**
		- **Radio-frequency gun**
- **POSITRON SOURCES**

• **ION SOURCES**

- **1+ ion source**
	- **Filament ion source**
	- **Surface ion source**
	- **Laser induced ion source**
	- **Electron Cyclotron Resonance ion source (ECRIS)**
	- **Electron beam ion source (EBIS)**
- **Negative Ion source**
- **Multicharged ion source**
	- **Laser ion source**
	- **Electron Beam Ion Source**
	- **Electron Cyclotron Resonance Ion Source**

• **RADIOACTIVE ION SOURCE**

- **Radioactive 1+ Ion sources**
- **Radioactive charge breeder**
- **TUTORIAL**

• **ADD-ON**

- **Beam Extraction from an ion source**
- **Ion Beam Emittance**
- **Low Enery Beam line Transfer**

PARTICULE SOURCES

- Particle source activity requires both Physics and Engineering skills on many transversal topics
	- High voltage, magnetism, thermodynamics, chemistry, vacuum, condensed matter physics, plasma physics, atomic physics…
- Particule sources are legions!
	- There are as many particle sources as accelerators
	- Each of them would justify a one hour lecture…
- So…It is **IMPOSSIBLE** to give a detailed overview of the topic within a day lecture
	- Please consider this lecture as an introduction to the topic
- The philosophy of this lecture is to present shortly commonly used sources of particle and introduce the physics behind

ELECTRON SOURCES

An introduction

Work Function of electrons in metals

- The **Work Function W** is the minimum energy needed to remove an electron from a solid to a point immediately outside of the solid surface
	- In a metal, some electrons are populating the Conduction Band
		- electrons shared by the lattice
	- The maximum binding energy of electrons in metal corresponds to the Fermi Energy: W=*EF* (whenT=0 Kelvin). So W<*EF when T>0.*

Work Function of electrons in metals (wikipedia)

- Units: eV electron Voltsreference: CRC handbook on Chemistry and Physics version 2008, p. 12-114.
- Note: Work function can change for crystalline elements based upon the orientation.

Max.

Electron statistics and energy distribution function

•Electron, being fermions, follow the Fermi-Dirac statistics :

 $\bullet f_{FM}(E) = \frac{-1}{-E}$ $1+e$ $\frac{E-E_F}{kT}$ $\cdot E_{F}$ Fermi Energy \cdot τ electron temperature

•On the other hand, bosons obey the Maxwell-Boltzmann statistics:

$$
\bullet f_{MB}(E) = e^{-\frac{E}{kT}}
$$

 \bullet Practically, when $(E > 1.005~E_F)$:

 $\bullet f_{FM}(E) \cong e^ \frac{E}{kT}$

•This approximation will be of interest to derive electron current densities

juas

Distorsion of the electric potential near to a metallic surface

• When an electron is emitted from a material, the **image charge effect** changes the electric potential profile near to the surface:

Electric potential energy as a function of distance near to a cathode with an externally applied electric field

- A first way to extract electrons is to <u>heat a material to a high temperature</u>
	- When the material is heated, the thermal vibrations of the atoms are partially transferred to the electrons ($E \sim kT_e$) which can populate excited states above the Fermi level
	- \bullet Electrons are finally kicked out of the metal when their final energy **E** is higher than the Work Function **W** : **E > W**
- **The thermionic emission** is the resulting flow of electrons extracted from the heated material
- • The application of a negative voltage (weak Electric field) helps to extract electrons from the metal surface (and accelerates them)

Thermionic emission of electrons : current density

• This is known as the <u>Richardson-Dushman</u> equation

Current density of Thermionic emission

- The experimental Thermionic emission flow is ruled by the Richardson-Dushman formula:
	- **J** current density (A/m2)
	- **A** Richardson constant
	- **W** =q.φ work function
	- **T** temperature
- Order of magnitudes :
	- Wolfram : W_w~4.5 eV ; Tw~2900 K \rightarrow J~10 A/cm²
	- LaB $_{\rm 6}$: W_{LaB6}~2.4 eV ; TLaB $_{\rm 6}$ ~2100 K \rightarrow J~10² A/cm²

$$
J = A T^2 e^{\frac{-W}{kT}} \quad , with A = A_0 \lambda_R
$$

$$
A_0 = \frac{4\pi m_e k^2 e}{h^3} = 1,20173 \times 10^6 A m^{-2} K^{-2}
$$

The Schottky effect

- The Schottky effect is the reduction of the electron work function when a strong external electric field E is applied to the hot cathode
	- •This is the case for thermionic guns since cathodes are negatively biased

- •• The work function is reduced by $\delta W = \sqrt{\frac{q^3 E}{4 \pi \varepsilon_0}}$
- The distance to the peak potential is $x_m = \sqrt{\frac{q}{16\pi\epsilon_0 E}}$
- • Modified Richardson-Dushman formula:
	- $J = AT^2e^{\frac{-(W-\delta W)}{kT}}$
- Shottky effect is usually of second order :
	- $E = 10 \frac{kV}{cm} \rightarrow \delta W = 30 \ meV$ and $x_m \sim 190 \ \AA$
	- $E = 100 \frac{kV}{cm} \rightarrow \delta W = 100 \ meV$ and $x_m{\sim}60$ Å
	- •• Schottky Effect valid up to $E{\sim}1\frac{MV}{cm} \rightarrow \delta W = 0.3\;eV$ and $x_m{\sim}19\; \AA$

The Thermionic Electron Source

- A very common electron source used in industry and research
	- klystron, TV tubes, electronic microscope, accelerators…
- Example of an electronic microscope source:

High Intensity Thermionic Electron Gun

- The electronic current is increased by increasing the cathod surface
	- Depending on the design, the beam intensities span from ~µA to ~100 A
- « Pierce design » At high current, the electron beam space charge (which inflates the beam) is compensated by a careful design of the electrodes (which generate a focusing effect)

Example of a modern accelerator thermionic gun

• Spring8 CeB6 Cathode for XFEL (SCSS)

K. Togawa et al., PAC03, 3332; NIMA 528 (2004) 312 H. Tanaka et al., FEL06, 769

Slide extracted from Brookhaven lecture on cathode physics, M. Poelkerand and J. Smedley

Cathode and filament aging

- The lifetime of a cathode/filament strongly depends on the condition of operation
	- Cathode shape
		- a massive cathode will last much longer
	- Residual vacuum pressure
		- Electrons collide with the residual gas and generate ions which are accelerated toward the cathode => cathode sputtering
	- High Temperature:
		- Atom evaporation
		- chemical reaction induced by neighbor materials or gas
		- •Thermal cycling generating cracks
		- Sudden burning, interruptions...

• Typical filament/cathode lifetime is 10²~10⁴ hours

cathodes damaged by sputtering

Electron Field Emission

- In the presence of a very strong electric field (E>10 MV/cm) , the working barrier is thin enough to allow electron emission through **Tunnel Effect**
- The associated emission is ruled by the Fowler-Nordheim theory (quantum physics)
- It is a **cold cathode emission** => no metal heating is required

Field Emission Electron Source (electronic microscopy)

(from J. Goldstein, Scanning electron microscopy) The lower the radius of the tip, the higher the electric field

Electrostatic Point effect (Corona)

•

The Spindt Array

- Field Emitter Array (FEA) consists of a large amount of small field electron emitters.
- The original form of array (Spindt Array) has small, sharp Mo cones
- Each tip can emit current from nA to mA
- Provides mechanism for controlled high current (even above A) with low power.
- Limitations from parasitic heating and space charge effects

- The emission level is controlled by adjusting the gate voltage (< 100 V)
- • Capacity of electron current up to 100 µA/tip has been demonstrated

Field Emission Array Electron Source

- • Several Companies developed Field Array emission gun (SRI Inc. , XDI Inc…) using the Spindt method
	- Array Built on Si base substrate, using semi-conductor technology
	- • Generation of large Field emission array surface
		- 50000 Mo spikes (tips) on a \varnothing 1 mm disk for SRI Inc.
- The DC operation is subject to fluctuation and is limited to a few 100 µA, due to:
	- • Thermal desorption of atoms inducing contamination, sputtering, parasitic discharges
	- Even destructive arcing if the pressure degrades too much

• **The pulsed operation is very promising**

- •Stable operation, no thermal issues, short pulses
- •High current density
- •Small intrinsic cathode emittance

 $10²$

 10^c

 10^{-2}

 (mA)

Tests performed at PSI

PAUL SCHERRER INSTITUT

- Pulsed

Figure 2: Current-voltage characteristic in DC and pulsed regime for a SRI Inc. FEA (1 um diameter, 50,000 Mo tips) Insert: SEM picture of some conical Mo tips (SRI website [3]).

300

Double Gated Field Array Source – PSI R&D

• The goal is the design of a high intensity, low emittance electron source for a free electron Laser facility

JUAS – PARTICULE SOURCES → ELECTRON SOURCES → FIELD EMISSION ELECTRON SOURCE

Needle Cathode Electron Source (PSI R&D)

- The cathode consists of a single ZrC needle
	- $\rm W_{ZrC}$ =3.5 eV
- Pulsed operation:
	- A 1 ns High Voltage pulse is applied to the needle
	- Peak intensity measured up to 500 mA

T. Thuillier, JUAS, Archamps, 7/3/2016

Photoelectric Effect

- The energy to emit an electron is given by a photon
	- A photocathode is a negatively charged electrode coated with a photosensitive compound. When it is struck by a photon, the absorbed energy causes electron emission due to the photoelectric effect.
	- • A photocathode is usually composed of alkali metals with very low work functions (e.g. Cesium).

W = photocathode Work function

T. Thuillier, JUAS, Archamps, 7/3/2016

- In solids, the Electron Affinity is the energy difference between the vacuum energy and the conduction band minimum.
- "Band bending refers to the local change in energy of electrons at a semiconductor junction due to space charge effects. The degree of band bending between two layers depends on the relative Fermi levels and carrier concentrations of the materials forming the junction.

- A NEA-GaAs photocathode is hit by a laser beam
- Photoelectrons are accelerated by a 5 MV/m electric field
	- 250 kV High voltage / average 50 mA beam intensity
- •Ultra low secondary vacuum (10⁻¹² mbar) to increase photocathode lifetime
	- •To prevent cathode contamination
	- • To minimize sputtering from the residual gas ionized by the electron beam

under designing

• Load-Lock system to remove/install/coat photocathode on site

TUPPH007,Proceedings of FEL 2006, BESSY, Berlin, Germany

Polarized Photoemission electron source at Jlab (1/2)

- When the laser beam is circularly polarized, the electron beam is partially polarized
	- Optical pumping between $P_{3/2}$ and $S_{1/2}$ states
	- The photon energy E_γ is chosen such that $E_{gap} < E_\gamma < E_{gap} + \Delta$
	- Laser circularly polarized σ^+ or σ^-
	- •• The probability to populate $-\frac{1}{2}$ and $+\frac{1}{2}$ states on $S_{1/2}$ being different, a 50% excess of polarization is obtained

T. Thuillier, JUAS, Archamps, 7/3/2016

Polarized Photoemission electron source at Jlab (1/2)

- A refinement of the polarization is obtained by adding extra layers on the photocathode : Complicated semiconductor elaboration
	- Split degeneracy of $P_{3/2}$
	- Direct optical pumping between $P_{3/2}$ and $S_{1/2}$
	- :• When $E_{gap} < E_{\gamma} < E_{gap} + \delta$

 $\bm{P}_{\bm{e}}=\pm\bm{100}\%$

• Experimentally $\bm{P}_e \!\sim \pm\,\mathbf{85\%}$

T. Thuillier, JUAS, Archamps, 7/3/2016

GaAs**1-x**P**x** 0<x<0.29 p-type GaAs substrate600 μ^m 250 μ^m

GaAs**1-x** P**^x** x=0.29

Strained GaAs

250 μ^m

3 '' wafer cut intoSlide adapted from 3 Water Cut Into
J. Grames, JLab, USA square photocathodes 1 Photocathode

Jlab polarized Photoemission gun

slide adapted from: J. Grames, JLab, USA

Radio Frequency Guns

The RF gun is the name given when the electron ion source is directly coupled to a RF Cavity

- •compact solution to accelerate directly above MeV Energies
- Work function reduced by the Shottky effect
- • higher currents are reachable
	- space charge limitation at a much higher beam intensity
- Can be used with many kind of electron source

A 3 GHz thermionic RF gun has been designed. It will produce a 2.3 MeV electron beam with bunch charge up to 0.2 nC (600 mA) at 10 pmm mRad normalised emittance.

Secondary electron emission

- Any particle (ion, electron, photon) impinging on a material with an energy higher than the electron work function *W* of this material can eject **secondary electrons** (among many other things…)
	- •Electron penetration depth: $x(\mu m) = \frac{0.1E^{1.5}}{0.2}$, ρ material density in *g/cm³*, *E* kinetic energy in KeV

Slide adapted from J. arianer, H. Koivisto

T. Thuillier, JUAS, Archamps, 7/3/2016

The photomultiplier

- It's not exactly an electron source, but a concept of interest in this lecture….
	- Can detect a single photon
	- 1 photon \rightarrow 1 photo-electron \rightarrow n secondary elecotron/dynode/electron
	- The electron signal is amplified (and accelerated) through a set of dynodes

Electron source beam emittance

- General formula for a 1 σ RMS normalized transverse emittance: $\epsilon_N = \gamma\beta\sigma_x\sigma_{x'}$
	- $\sigma_x = \sqrt{\langle x^2 \rangle}$ RMS beam size, calculated on the cathode surface

•
$$
\sigma_{x'} = \frac{\sqrt{\langle p_x^2 \rangle}}{p}
$$

• Thermionic gun

•
$$
\epsilon_N = \sigma_x \sqrt{\frac{kT}{m_e c^2}}
$$

• $\sigma_{x'} = \frac{\sqrt{\langle p_x^2 \rangle}}{\gamma \beta m_e c} = \frac{\sqrt{\langle v_x^2 \rangle}}{\gamma \beta c} = \frac{1}{\gamma \beta c} \sqrt{\frac{kT}{m_e}}$, assuming a Maxwell Boltzmann distribution

Electronsource type ϵ_N/σ_x **[micron/mm]** Thermionic ~ 0.3 Field Emission \sim 0.5-1 Photo Emission $~10.5 - 2$

• Field emission

•
$$
\epsilon_N = \sigma_x \sqrt{\frac{E_F}{m_e c^2}} \left[\frac{4E_F}{\hbar F} \sqrt{2m_e w} \cdot t(y) - 1 \right]^{-1/2}
$$

- $F = e \times$ [Electric field intensity]
- w work function of cathode
- E_F Fermi energy

•
$$
t(y) \approx 1 + \frac{1}{9}y^2(1 - \ln(y))
$$
, with $y = \sqrt{\alpha \hbar cF}/w$, $\alpha = e^2/\hbar c 4\pi\epsilon_0$

• Photo emission (pulsed beam)

•
$$
\epsilon_N = \sigma_x \sqrt{\frac{\hbar \omega - w - \sqrt{\alpha \hbar c F}}{3 m_e c^2}}
$$

T. Thuillier, JUAS, Archamps, 7/3/2016

N.B. : micron is a commonly used unit in the electron beam community:

- 1π . mm . $mrad$ emittance corresponds to
- 3.14×10^{-6} m. rad \Leftrightarrow 3.14 μ m

See K.L. Jensen et al., Jour. Appl. Phys. 107, 014903 (2010)

Chambre de Wilson

Carl Anderson *C.D. Anderson, Physical Review 43, 491 (1933)*

POSITRON SOURCE

An introduction

Positron Source

- The positron is the antiparticle of the electron, it has a positive charge
- Mechanism to make a positron:
	- \cdot β ⁻decay :
		- ${}_{7}^{A}N \rightarrow {}_{7}^{A}N' + e^{+} + \nu_{e}$
		- Many nuclear reactions occur through the β^- decay channel
	- Pair production:
		- $\gamma + X \rightarrow X + e^+ + e^-$, where X is either a nucleus or an electron
		- The gamma photon must have an energy $E > 2 m_e c^2 \sim 1$ MeV
		- The pair production process is dominant at high energy

• Interaction of positron with matter

- The positron interact with an electron to form a quasi-stable positronium which eventually anihilates into two photons: $e^+ + e^- \rightarrow \gamma + \gamma$
- Interest of the positron:
	- Condensed matter study: positrons can penetrate deeply into matter and can help making non-destructive 3D analysis of materials
	- Accelerator : positron is foreseen to be used in a leptonic collider able to accelerate both e^+ and e^- in the same vacuum pipe \rightarrow **CLIC**

 κ_{nuc}

κ,

1 GeV

Pair production

dominant

 1111

5

10

 0.5

 $\overline{1}$

 E_{γ} (MeV)

 0.01

 0.05 0.1

100 Ge'

50 100

Positron beam at NC State University (1/2)

- A 1 MW nuclear reactor (PULSTAR) generates neutrons and gammas
	- Neutrons are converted into γ in a cadmium shroud
	- • γ are converted in $e^+ + e^-$ pair in Tungsten metal strips
	- • The tungsten strips also play the role of moderator to slow down e^+ to a few eV

Positron beam intensity available for experiments

- 1. Neutrons (n) and gammas (y) are emitted from fission reactions in the reactor core.
	- Neutrons react in the cadmium shroud producing additional gamma rays.
- Gamma rays interact by $3₁$ pair production in the tungsten moderator to form positrons.
- 4. Positrons thermalize and are emitted from the tungsten surface with energies of a few electron volts (eV).

Tungsten Moderator Assembly

- 2 Moderator Banks
- Made from Tungsten metal strips
- Each bank 8" OD, 1 in thick
- Cleaned and annealed at 2200K for 4 hours
- Evacuated to 5E-8 millibar

Content extracted from http://www.ne.ncsu.edu/nrp/ips.html

Positron beam at NC State University (2/2)

- \cdot e^{+} are focused by Electrostatic lenses at the exit of the converter
- e^+ beam is transported in a magnetic LEBT toward experimental caves
- Application of positron beam: non destructive technique to detect defects and free volume in a wide variety of material
	- Pore sizes ranging from several angstroms to ~30 nm can be determined
	- Positron often form meta-stable positronium $(e^+ e^-)$ bound state)
	- Positron and positronium naturally seek out the defects and void due to coulomb and dielectric interaction

Beam line overview with the reactor

Positron and Positronium Interactions with Condensed Matter Figure courtesy of NanoPos group, Dept. of Physics, Univ. of Michigar

Positron beam for the CLIC facility

- CLIC (Compact LInear Collider) is a proposed future e^+e^- collider, designed to perform electron-positron collisions
	- e^+e^- colliders can be used to determine parameters with a much higher precision than proton colliders (LHC).
	- e^+ e-• Allows physicists to explore a new energy region in the multi TeV range beyond the capabilities of today's particle accelerators.
	- Number of positrons/pulse (at IP) $\approx 11.5 \times 10^{11}$
	- Flux: $1.1 \times 10^{14} e^+/s$ (challenging!)
- How to produce such a Flux?

3 schemes…/…

T. Thuillier, JUAS, Archamps, 7/3/2016

Possible schemes to produce positrons for CLIC (1/3)

- Scheme A, (up to date) Conventional way:
	- •a 5 GeV primary e^- pulsed beam is first converted into γ in a tungsten crystal oriented on its <111> axis.
		- ߛ escape the target helped with the **channeling effect**
		- e^+e^- , also created in this section, are next swept away by a magnetic dipole
	- The γ are next converted into e^+e^- pairs in a thick amorphous tungsten target
	- An Adiabatic Matching Device (tapered axial magnetic field) focuses the e^+ beam
	- A pre-injector LINAC capture the e^+ bunches and accelerate them up to 200 MeV

JUAS – PARTICULE SOURCES → ELECTRON SOURCES → POSITRON SOURCE

Possible schemes to produce positrons for CLIC (2/3)

- Scheme B: Undulator based γ -radiation:
	- γ photons can be produced by synchrotron radiation from a high energy e^- beam
	- Any charged particle radiates photons when it accelerates
	- An electron placed in a magnetic field radiates synchrotron light
	- •The higher the Lorentz factor γ_l , the higher the photon collimation
	- The longer the undulator, the higher the γ photon intensity
- •This process suppresses the use of the scheme A crystal target

s thing called the animity of an interval of close the middler the Krist the visitor into is ones ameas these diference knowled

Possible schemes to produce positrons for CLIC (3/3)

- Scheme C: Compton back-scattering
	- A 1 GeV electron beam interacts with a circularly polarized laser beam
	- Circularly polarized γ photons are emitted via Compton backscattering
	- The polarized γ photons generate polarized e^+ via pair production in target
- Advantages:
	- Suppresses the crystal target
	- Higher collider reaction cross section with polarized e^+ and polarized e^- beams
- Inconvenient:
	- Requires electron and laser bunch intensities which are not available today

The CLIC 3 scheme will require strong and active R&D!

