Lecture 4: Quenching and Protection

Plan

- the quench process
- decay times and temperature rise
- propagation of the resistive zone
- computing resistance growth and decay times
- mini tutorial
- quench protection schemes
- LHC quench protection

Magnetic stored energy

B

2

 2μ

E

 $=$

Magnetic energy density

o at 5T $E = 10^7$ Joule.m⁻³ at 10T $E = 4 \times 10^7$ Joule.m⁻³

LHC dipole magnet (twin apertures) $E = \frac{1}{2}LI^2$ $L = 0.12H$ $I = 11.5kA$ $E = 7.8 \times 10^6$ Joules

the magnet weighs 26 tonnes

so the magnetic stored energy is equivalent to the kinetic energy of:-

26 tonnes travelling at 88km/hr

coils weigh 830 kg equivalent to the kinetic energy of:-

The quench process

- at a **point - this is the problem!** • resistive region starts somewhere in the winding
- it grows by thermal conduction
- stored energy $\frac{1}{2}LI^2$ of the magnet is dissipated as heat
- greatest integrated heat dissipation is at point where the quench starts
- maximum temperature may be calculated from the current decay time via the $U(\theta)$ function (adiabatic approximation)
- internal voltages much greater than terminal voltage ($=$ V_{cs}) current supply)

The temperature rise function $U(\theta)$

household fuse blows at 15A, $area = 0.15$ mm² J = 100Amm⁻² NbTi in 5T $J_c = 2500$ Amm⁻²

• NB always use **overall** current density

Measured current decay after a quench

Dipole GSI001 measured at Brookhaven National Laboratory

Calculating temperature rise from the current decay curve

Calculated temperature

- calculate the $U(\theta)$ function from known materials properties
- measure the current decay profile
- calculate the maximum temperature rise at the point where quench starts
- we now know if the temperature rise is acceptable
	- but only after it has happened!
- need to calculate current decay curve before quenching

Growth of the resistive zone

Quench propagation velocity 1

- resistive zone starts at a point and spreads outwards
- driving it forward is heat generation in the resistive zone and heat conduction along the wire
- heat conduction equation with resistive power generation $J^2\rho$ per unit volume.

$$
\frac{\partial}{\partial x}\left(kA\frac{\partial\theta}{\partial x}\right) - \gamma CA\frac{\partial\theta}{\partial t} - hP(\theta - \theta_0) + J^2\rho A = 0
$$

where: $k =$ *thermal conductivity,* $A =$ *area occupied by a single turn,* $\gamma =$ *density,* $C =$ *specific heat, h* = *heat transfer coefficient, P* = *cooled perimeter,* ρ = *resistivity,* θ _o = *base temperature Note: all parameters are averaged over A the cross section occupied by one turn*

assume x_t moves to the right at velocity v and take a new coordinate $\varepsilon = x - x_t = x - vt$

$$
\frac{d^2\theta}{d\varepsilon^2} + \frac{v\gamma C}{k}\frac{d\theta}{d\varepsilon} - \frac{hP}{kA}(\theta - \theta_0) + \frac{J^2\rho}{k} = 0
$$

Martin Wilson Lecture 4 slide‹#› JUAS February 2016

Quench propagation velocity 2

when $h = 0$, the solution for θ which gives a continuous join between left and right sides at θ_t gives the *adiabatic propagation velocity*

$$
v_{ad} = \frac{J}{\gamma C} \left\{ \frac{\rho k}{\theta_t - \theta_0} \right\}^{\frac{1}{2}} = \frac{J}{\gamma C} \left\{ \frac{L_o \theta_t}{\theta_t - \theta_0} \right\}^{\frac{1}{2}}
$$

recap Wiedemann Franz Law $\rho(\theta)$ *.k(* θ) = L_o θ

what to say about θ_t **?**

- in a single superconductor it is just θ_c $\ddot{}$
	- but in a practical filamentary composite wire the current transfers progressively to the copper
		- current sharing temperature $\theta_s = \theta_o + margin$
		- zero current in copper below θ_{s} all current in copper above θ_{c}
		- take a mean transition temperature $\theta_t = (\theta_s + \theta_c)/2$

Quench propagation velocity 3

- resistive zone also propagates sideways through inter-turn insulation (much more slowly)
- similar calculation \Rightarrow velocity ratio α

$$
v_{ad} = 5 - 20
$$
 ms⁻¹ $\alpha = 0.01 - 0.0$

so the resistive zone advances in the form of an ellipsoid, with its long dimension along the wire

 $=\frac{v_{trans}}{v_{trans}}=$

v

v

 α

trans

long

2 1

 \int

long

trans

 $\overline{\mathcal{L}}$

k

k

 \vert $\left\{ \right.$ $\left($ $\overline{}$ $\left\{ \right\}$ $\begin{matrix} \end{matrix}$

Some corrections for a better approximation

- because C varies so strongly with temperature, it is better to calculate an averaged C by numerical integration
- $(\theta_c \theta_u)$ *C(θ(θ)* $C_{av}(\theta_{\varrho}, \theta_{\varrho})$ $c - \sigma_g$ *θ* $a_v \vee \mathcal{C}_g$, \mathcal{C}_c *g* \overline{a} $=$ \int

θ

c

- heat diffuses slowly into the insulation, so its heat capacity should be excluded from the averaged heat capacity when calculating longitudinal velocity - but not transverse velocity
- if the winding is porous to liquid helium (usual in accelerator magnets) need to include a time dependent heat transfer term
- can approximate all the above, but for a really good answer must solve (numerically) the three dimensional heat diffusion equation - or even better measure it!

Resistance growth and current decay - numerical

Martin Wilson Lecture 4 slide‹#› JUAS February 2016

Quench starts in the pole region

*** *** the geometry factor f_g depends on where the quench starts in relation to the coil boundaries

Quench starts in the mid plane

Computer simulation of quench (dipole GSI001)

OPERA: a more accurate approach

solve the non-linear heat diffusion & power dissipation equations for the whole magnet

Compare with measurement

C:\u\is\Data\Impdahma\TestBedB-HTS\test_c17_limited_loss_p2w_sn2allp8.log

Coupled transient thermal and electromagnetic finite element simulation of Quench in superconducting magnets C Aird et al Proc ICAP 2006 available at www.jacow.org

6/Sep/2010 10:47:48

$Mini$ *Tutorial:* $U(\theta)$ *function*

It is often useful to talk about a magnet quench decay time, defined by:

$$
\int\limits_{\theta_o}^{\theta_m} J^2 dt = J_o^2 T_d
$$

- i) For the example of magnet GSI001, given above, $T_d = 0.167$ sec Use the $U(\theta_m)$ plot below to calculate the maximum temperature.
- ii) This was a short prototype magnet. Supposing we make a full length magnet and compute T_d = 0.23 sec. - should we be worried?
- iii) If we install quench back heaters which reduce the decay time to 0.1 sec, what will the maximum temperature rise be?

Data

Magnet current $I_o = 7886$ Amps

Unit cell area of one cable $A_u = 13.6$ mm²

*U(*q*^m) function for dipole GSI001*

Note: circuit breaker must be able to open at full current against a voltage $V = I.R_p$ *(expensive)*

1) external dump resistor

- detect the quench electronically
- open an external circuit breaker
- force the current to decay with a time constant τ

$$
I = I_o e^{-\frac{t}{\tau}}
$$
 where $\tau = \frac{L}{R_p}$

• calculate θ_{max} from

$$
\int J^2 dt = J_o^2 \frac{\tau}{2} = U(\theta_m)
$$

$$
T_Q = \frac{\tau}{2}
$$

Note: usually pulse the heater by a capacitor, the high voltages involved raise a conflict between:-

- *- good themal contact*
-

2) quench back heater

- detect the quench electronically
- power a heater in good thermal contact with the winding
- quenches other regions of the magnet, forcing normal zone to grow more rapidly
	- \Rightarrow higher resistance
	- \Rightarrow shorter decay time
	- \Rightarrow lower temperature rise at the hot spot

 \Rightarrow spreads inductive energy over most of winding

3) quench detection (a)

internal voltage after quench *Q* $\frac{du}{dt}$ + V_{cs} $V = IR_0 = -L\frac{dI}{dt}$ +

- not much happens in the early stages small $dI/dt \Rightarrow$ small *V*
- but important to act soon if we are to reduce T_O significantly
- so must detect small voltage
- superconducting magnets have large inductance \Rightarrow large voltages during charging
- detector must reject $V = L dI/dt$ and pick up $V = IR$
- detector must also withstand high voltage **as must the insulation**

i) Mutual inductance

detector subtracts voltages to give

$$
V = L\frac{di}{dt} + IR_Q - M\frac{di}{dt}
$$

- adjust detector to effectively make $L = M$
- *M* can be a toroid linking the current supply bus, but must be linear - no iron!

3) quench detection (b)

ii) Balanced potentiometer

- adjust for balance when not quenched
- unbalance of resistive zone seen as voltage across detector D
- if you worry about symmetrical quenches connect a 2nd detector at a different point

Methods of quench protection: 4) Subdivision

- resistor chain across magnet cold in cryostat
- current from rest of magnet can by-pass the resistive section
- effective inductance of the quenched section is reduced
	- \Rightarrow reduced decay time
	- \Rightarrow reduced temperature rise
- current in rest of magnet increased by mutual inductance \Rightarrow quench initiation in other regions
	- often use cold diodes to avoid shunting magnet when charging it
	- diodes only conduct (forwards) when voltage rises to quench levels
	- connect diodes 'back to back' so they can conduct (above threshold) in either direction

- coils are usually connected by superconducting links
- joints are often clamped between copper blocks
- link quenches but copper blocks stop the quench propagating
- inductive energy dumped in the link
- current leads can overheat

Inter-connections can also quench

any part of the inductive circuit is at risk

LHC dipole protection: practical implementation

It's difficult! - the main challenges are:

1) Series connection of many magnets

- In each octant, 154 dipoles are connected in series. If one magnet quenches, the combined energy of the others will be dumped in that magnet \Rightarrow vaporization!
- **Solution 1**: cold diodes across the terminals of each magnet. Diodes normally block \Rightarrow magnets track accurately. If a magnet quenches, it's diodes conduct \Rightarrow octant current by-passes.
- **Solution 2:** open a circuit breaker onto a resistor (several tonnes) so that octant energy is dumped in ~ 100 secs.

2) High current density, high stored energy and long length

- Individual magnets may burn out even when quenching alone.
- **Solution 3:** Quench heaters on top and bottom halves of every magnet.

LHC power supply circuit for one octant

- in normal operation, diodes block \Rightarrow magnets track accurately
- if a magnet quenches, diodes allow the octant current to by-pass
- circuit breaker reduces to octant current to zero with a time constant of 100 sec
- initial voltage across breaker = 2000V
- stored energy of the octant = 1.33GJ

LHC quench-back heaters

- stainless steel foil $15 \text{mm} \times 25 \text{ µm}$ glued to outer surface of winding
- insulated by Kapton
- pulsed by capacitor 2×3.3 mF at $400 \text{ V} = 500 \text{ J}$
- quench delay at rated current = 30msec - at 60% of rated current $= 50$ msec
- copper plated 'stripes' to reduce resistance

Diodes to by-pass the main ring current

Installing the cold diode package on the end of an LHC dipole

Inter-connections can also quench!

Quenching: concluding remarks

- magnets store large amounts of energy during a quench this energy gets dumped in the winding \Rightarrow intense heating (*J* ~ fuse blowing) \Rightarrow possible death of magnet
- temperature rise and internal voltage can be calculated from the current decay time
- computer modelling of the quench process gives an estimate of decay time – but must decide where the quench starts
- if temperature rise is too much, must use a protection scheme
- active quench protection schemes use quench heaters or an external circuit breaker - need a quench detection circuit which rejects *LdI/ dt* and is **100%** reliable
- passive quench protection schemes are less effective because *V* grows so slowly at first - but are 100% reliable
- don't forget the inter-connections and current leads

ITER Cadarache France first plasma 2020? B_{maxTF} = 11.8T $R_0 = 6.2m$ $B_{maxCS} = 13T$ E_{TF} = 41GJ output power 500MW

