Lecture 4: Quenching and Protection

Plan

- the quench process
- decay times and temperature rise
- propagation of the resistive zone
- computing resistance growth and decay times
- mini tutorial
- quench protection schemes
- LHC quench protection

Magnetic stored energy

Magnetic energy density

 $E = \frac{B^2}{2\mu_o}$ at 5T $E = 10^7$ Joule.m⁻³ at 10T $E = 4 \times 10^7$ Joule.m⁻³

LHC dipole magnet (twin apertures) $E = \frac{1}{2}LI^2$ L = 0.12H I = 11.5kA $E = 7.8 \times 10^6$ Joules

the magnet weighs 26 tonnes

so the magnetic stored energy is equivalent to the kinetic energy of:-

26 tonnes travelling at 88km/hr

coils weigh 830 kg equivalent to the kinetic energy of:-

The quench process

• resistive region starts somewhere in the winding

at a **point - this is the problem!**

- it grows by thermal conduction
- stored energy ¹/₂LI² of the magnet is dissipated as heat
- greatest integrated heat dissipation is at point where the quench starts
- maximum temperature may be calculated from the current decay time via the U(θ) function (adiabatic approximation)
- internal voltages much greater than terminal voltage (= V_{cs} current supply)

The temperature rise function $U(\theta)$

household fuse blows at 15A, area = 0.15mm² J = 100Amm⁻² NbTi in 5T J_c = 2500Amm⁻²

16% Kapton and 3% stainless steel

• NB always use **overall** current density

Measured current decay after a quench

Dipole GSI001 measured at Brookhaven National Laboratory

Calculating temperature rise from the current decay curve

Martin Wilson Lecture 4 slide (#)

Calculated temperature

- calculate the U(θ) function from known materials properties
- measure the current decay profile
- calculate the maximum temperature rise at the point where quench starts
- we now know if the temperature rise is acceptable
 - but only after it has happened!
- need to calculate current decay curve before quenching

Growth of the resistive zone

Quench propagation velocity 1

- resistive zone starts at a point and spreads outwards
- driving it forward is heat generation in the resistive zone and heat conduction along the wire
- heat conduction equation with resistive power generation $J^2\rho$ per unit volume.

$$\frac{\partial}{\partial x}\left(kA\frac{\partial\theta}{\partial x}\right) - \gamma CA\frac{\partial\theta}{\partial t} - hP(\theta - \theta_0) + J^2\rho A = 0$$

where: k = thermal conductivity, A = area occupied by a single turn, $\gamma =$ density, C = specific heat, h = heat transfer coefficient, P = cooled perimeter, $\rho =$ resistivity, $\theta_o =$ base temperature **Note:** all parameters are averaged over A the cross section occupied by one turn

assume x_t moves to the right at velocity v and take a new coordinate $\mathcal{E} = x - x_t = x - vt$

$$\frac{d^{2}\theta}{d\varepsilon^{2}} + \frac{v\gamma C}{k}\frac{d\theta}{d\varepsilon} - \frac{hP}{kA}(\theta - \theta_{0}) + \frac{J^{2}\rho}{k} = 0$$

Martin Wilson Lecture 4 slide(#)

Quench propagation velocity 2

when h = 0, the solution for θ which gives a continuous join between left and right sides at θ_t gives the *adiabatic propagation velocity*

$$v_{ad} = \frac{J}{\gamma C} \left\{ \frac{\rho k}{\theta_t - \theta_0} \right\}^{\frac{1}{2}} = \frac{J}{\gamma C} \left\{ \frac{L_o \theta_t}{\theta_t - \theta_0} \right\}^{\frac{1}{2}}$$

what to say about θ_t ?

- in a single superconductor it is just θ_c
- but in a practical filamentary composite wire the current transfers progressively to the copper
 - current sharing temperature $\theta_s = \theta_o + margin$
 - zero current in copper below θ_s all current in copper above θ_c
 - take a mean transition temperature $\theta_t = (\theta_s + \theta_c)/2$

recap Wiedemann Franz Law $\rho(\theta).k(\theta) = L_o \theta$

Martin Wilson Lecture 4 slide(#)

JUAS February 2016

Quench propagation velocity 3

- resistive zone also propagates sideways through inter-turn insulation (much more slowly)
- similar calculation \Rightarrow velocity ratio α

$$\alpha = 5 - 20 \text{ ms}^{-1}$$
 $\alpha =$

so the resistive zone advances in the form of an ellipsoid, with its long dimension along the wire

 $C_{av}(\theta_g, \theta_c) = \frac{\int_{\theta_g}^{\theta_c} C(\theta(\theta))}{(\theta_c - \theta_c)}$

Some corrections for a better approximation

- because C varies so strongly with temperature, it is better to calculate an averaged C by numerical integration
- heat diffuses slowly into the insulation, so its heat capacity should be excluded from the averaged heat capacity when calculating longitudinal velocity - but not transverse velocity
- if the winding is porous to liquid helium (usual in accelerator magnets) need to include a time dependent heat transfer term
- can approximate all the above, but for a really good answer must solve (numerically) the three dimensional heat diffusion equation - or even better measure it!

Resistance growth and current decay - numerical

Martin Wilson Lecture 4 slide (#)

JUAS February 2016

Quench starts in the pole region

the geometry factor f_g depends on where the quench starts in relation to the coil boundaries

Quench starts in the mid plane

Computer simulation of quench (dipole GSI001)

OPERA: a more accurate approach

solve the non-linear heat diffusion & power dissipation equations for the whole magnet

Compare with measurement

C:\u\js\Data\Impdahma\TestBedB-HTS\test_c17_limited_loss_p2w_sn2allp8.log

Coupled transient thermal and electromagnetic finite element simulation of Quench in superconducting magnets C Aird et al Proc ICAP 2006 available at www.jacow.org

6/Sep/2010 10:47:48

Mini Tutorial: $U(\theta)$ function

It is often useful to talk about a magnet quench decay time, defined by:

$$\int_{\theta_o}^{\theta_m} J^2 dt = J_o^2 T_d$$

- i) For the example of magnet GSI001, given above, $T_d = 0.167$ sec Use the $U(\theta_m)$ plot below to calculate the maximum temperature.
- ii) This was a short prototype magnet. Supposing we make a full length magnet and compute $T_d = 0.23$ sec. should we be worried?
- iii) If we install quench back heaters which reduce the decay time to 0.1 sec, what will the maximum temperature rise be?

<u>Data</u>

Magnet current $I_o = 7886$ Amps

Unit cell area of one cable $A_u = 13.6 \text{ mm}^2$

$U(\theta_m)$ function for dipole GSI001

Methods of quench protection: 1) external dump resistor

Note: circuit breaker must be able toopen at full current against a voltage $V = I.R_p$

- detect the quench electronically
- open an external circuit breaker
- force the current to decay with a time constant *τ*

$$I = I_o e^{-\frac{t}{\tau}}$$
 where $\tau = \frac{L}{R_p}$

• calculate θ_{max} from

$$\int J^2 dt = J_o^2 \frac{\tau}{2} = U(\theta_m)$$

$$T_Q = \frac{\tau}{2}$$

Methods of quench protection:

Note: usually pulse the heater by a capacitor, the high voltages involved raise a conflict between:-

- good themal contact
- good electrical insulation

2) quench back_heater

- detect the quench electronically
- power a heater in good thermal contact with the winding
- quenches other regions of the magnet, forcing normal zone to grow more rapidly
 - \Rightarrow higher resistance
 - \Rightarrow shorter decay time
 - \Rightarrow lower temperature rise at the hot spot

⇒ spreads inductive energy over most of winding

Methods of quench protection:

3) quench detection (a)

internal voltage $V = IR_Q = -L\frac{dI}{dt} + V_{cs}$ after quench

- not much happens in the early stages small $dI/dt \Rightarrow$ small V
- but important to act soon if we are to reduce T_Q significantly
- so must detect small voltage
- superconducting magnets have large inductance ⇒ large voltages during charging
- detector must reject V = L dI/dt and pick up V = IR
- detector must also withstand high voltage as must the insulation

Methods of quench protection:

i) Mutual inductance

detector subtracts voltages to give

$$V = L\frac{di}{dt} + IR_Q - M\frac{di}{dt}$$

- adjust detector to effectively make L = M
- *M* can be a toroid linking the current supply bus, but must be linear no iron!

3) quench detection (b)

ii) Balanced potentiometer

- adjust for balance when not quenched
- unbalance of resistive zone seen as voltage across detector D
- if you worry about symmetrical quenches connect a 2nd detector at a different point

Methods of quench protection: 4) Subdivision

- resistor chain across magnet cold in cryostat
- current from rest of magnet can by-pass the resistive section
- effective inductance of the quenched section is reduced
 - \Rightarrow reduced decay time
 - \Rightarrow reduced temperature rise
- current in rest of magnet increased by mutual inductance
 ⇒ quench initiation in other regions
 - often use cold diodes to avoid shunting magnet when charging it
 - diodes only conduct (forwards) when voltage rises to quench levels
 - connect diodes 'back to back' so they can conduct (above threshold) in either direction

- coils are usually connected by superconducting links
- joints are often clamped between copper blocks
- link quenches but copper blocks stop the quench propagating
- inductive energy dumped in the link
- current leads can overheat

Inter-connections can also quench

any part of the inductive circuit is at risk

LHC dipole protection: practical implementation

It's difficult! - the main challenges are:

1) Series connection of many magnets

- In each octant, 154 dipoles are connected in series. If one magnet quenches, the combined energy of the others will be dumped in that magnet ⇒ vaporization!
- Solution 1: cold diodes across the terminals of each magnet. Diodes normally block ⇒ magnets track accurately. If a magnet quenches, it's diodes conduct ⇒ octant current by-passes.
- Solution 2: open a circuit breaker onto a resistor (several tonnes) so that octant energy is dumped in ~ 100 secs.

2) High current density, high stored energy and long length

- Individual magnets may burn out even when quenching alone.
- Solution 3: Quench heaters on top and bottom halves of every magnet.

LHC power supply circuit for one octant

- in normal operation, diodes block \Rightarrow magnets track accurately
- if a magnet quenches, diodes allow the octant current to by-pass
- circuit breaker reduces to octant current to zero with a time constant of 100 sec
- initial voltage across breaker = 2000V
- stored energy of the octant = 1.33GJ

LHC quench-back heaters

- stainless steel foil 15mm x 25 μ m glued to outer surface of winding
- insulated by Kapton
- pulsed by capacitor $2 \times 3.3 \text{ mF}$ at 400 V = 500 J
- quench delay at rated current = 30msec
 at 60% of rated current = 50msec
- copper plated 'stripes' to reduce resistance

Diodes to by-pass the main ring current

Installing the cold diode package on the end of an LHC dipole

Inter-connections can also quench!

Quenching: concluding remarks

- magnets store large amounts of energy during a quench this energy gets dumped in the winding
 ⇒ intense heating (*J* ~ fuse blowing)
 ⇒ possible death of magnet
- temperature rise and internal voltage can be calculated from the current decay time
- computer modelling of the quench process gives an estimate of decay time

 but must decide where the quench starts
- if temperature rise is too much, must use a protection scheme
- active quench protection schemes use quench heaters or an external circuit breaker - need a quench detection circuit which rejects LdI/dt and is <u>100%</u> reliable
- passive quench protection schemes are less effective because V grows so slowly at first
 but <u>are</u> 100% reliable
- don't forget the inter-connections and current leads

ITER Cadarache France first plasma 2020? $B_{maxTF} = 11.8T$ $R_o = 6.2m$ $B_{maxCS} = 13T$ $E_{TF} = 41GJ$ output power 500MW

