Joint Universities Accelerator School JUAS 2016 Archamps, France, 22nd – 26th February 2016

Normal-conducting accelerator magnets

Thomas Zickler, CERN

Normal-conducting accelerator magnets

0

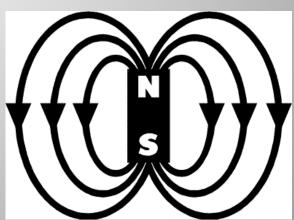
Scope of the lectures

Overview of electro-magnetic technology as used in particle accelerators considering *normal-conducting, iron-dominated* electro-magnets (generally restricted to direct current situations) Main goal is to:

- create a fundmental understanding in accelerator magnet technology
- provide a guide book with practical instructions how to start with the design of a standard accelerator magnet
- focus on applied and practical design aspects using 'real' examples
- introduce finite element codes for practical magnet design
- present an outlook into magnet manufacturing, testing and measurements

Not covered:

- permanent magnet technology
- superconducting technology



Acknowledgements

Many thanks ...

... to all my colleagues who contributed to this lecture, in particular L.Bottura, M.Buzio, B.Langenbeck, N.Marks, A.Milanese, S.Russenschuck, D.Schoerling, C.Siedler, S.Sgobba, D.Tommasini, A.Vorozhtsov

- Fifth General Accelerator Physics Course, CAS proceedings, University of Jyväskylä, Finland, September 1992, CERN Yellow Report 94-01
- International Conference on Magnet Technology, Conference proceedings
- Iron Dominated Electromagnets, J. T. Tanabe, World Scientific Publishing, 2005
- Magnetic Field for Transporting Charged Beams, G. Parzen, BNL publication, 1976
- Magnete, G. Schnell, Thiemig Verlag, 1973 (German)
- Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization, S. Russenschuck, Wiley-VCH, 2010
- Practical Definitions & Formulae for Normal Conducting Magnets, D. Tommasini, Sept. 2011
- CAS proceedings, Magnetic measurements and alignment, Montreux, Switzerland, March 1992, CERN Yellow Report 92-05
- CAS proceedings, Measurement and alignment of accelerator and detector magnets, Anacapri, Italy, April 1997, CERN Yellow Report 98-05
- Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, K. Wille, Teubner Verlag, 1996
- CAS proceedings, Magnets, Bruges, Belgium, June 2009, CERN Yellow Report 2010-004

Lecture 1

Introduction & Basic principles

A bit of history...Why do we need magnets?Basic principles and conceptsMagnet types

Lecture 2

Analytical design

What do we need to know before starting? Yoke design Coil dimensioning Cooling layout

Lecture 3

Magnet production, tests and measurements

Magnetic materials Manufacturing techniques Quality assurance Recurrent quality issues Cost estimation and optimization

Monday 22.2. (10:45 – 12:15)

Monday 22.2. (16:15 – 17:15)

Monday 22.2. (17:15 – 18:15)

Lecture 4

Tuesday 25.2. (15:00 – 16:00)

Applied numerical design

Building a basic 2D finite-element model

Interpretation of results

Outlook into 3D design

Typical application examples / limitation of numerical design

Tutorial

Tuesday 25.2. (16:15 – 18:15)

Case study (part 1)

Introduction

Students are invited to design and specify a ,real' magnet

Analytical magnet design on paper

Mini-workshop

Wednesday, 26.2. (9:00 - 12:15)

JUAS 2016

Case study (part 2)

Computer work

Numerical magnet design

Lecture 1: Basic principles

- A bit of history...
- Why do we need magnets?
- Magnet technologies
- Basic principles and concepts
- Field description
- Magnet types and applications

A bit of history...

1820: Hans Christian Oersted (1777-1851) finds that electric current affects a compass needle

1820: Andre Marie Ampere (1775-1836) in Paris finds that wires carrying current produce forces on each other

1820: Michael Faraday (1791-1867) at

Royal Society in London develops the idea of electric fields and studies the effect of currents on magnets and magnets inducing electric currents

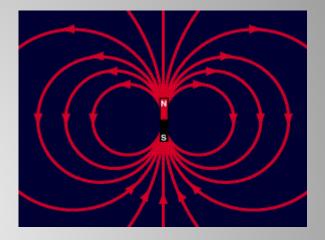
1825: British electrician, William Sturgeon (1783-1850) invented the first electromagnet

1860: James Clerk Maxwell (1831-1879), a Scottish physicist and mathematician, puts the theory of electromagnetism on mathematical basis

Magnetic units

IEEE defines the following units:

- Magnetic field:
 - *H*(vector) [A/m]
 - the magnetizing force produced by electric currents
- Electromotive force:
 - e.m.f. or U [V or (kg m²)/(A s³)]
 - here: voltage generated by a time varying magnetic field
- Magnetic flux density or magnetic induction:
 - B (vector) [T or kg/(A s²)]
 - the density of magnetic flux driven through a medium by the magnetic field
 - <u>Note</u>: induction is frequently referred to as "Magnetic Field"
 - *H*, *B* and μ relates by: $B = \mu H$
- Permeability:
 - $\mu = \mu_0 \, \mu_r$
 - permeability of free space $\mu_0 = 4 \pi 10^{-7} [V s/A m]$
 - relative permeability μ_r (dimensionless): $\mu_{air} = 1$; $\mu_{iron} > 1000$ (not saturated)
- Magnetic flux:
 - ϕ [Wb or (kg m²)/(A s²)]
 - surface integral of the flux density component perpendicular trough a surface



Ga

History – Introduction – Basic principles – Magnet types – Summary

Maxwell's equations

In 1873, Maxwell published "Treatise on Electricity and Magnetism" in which he summarized the discoveries of Coulomb, Oersted, Ampere, Faraday, et. al. in four mathematical equations:

Gauss' law for electricity:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
substitution in the second second

$$\nabla \cdot \vec{B} = 0$$

Faraday's law of induction:

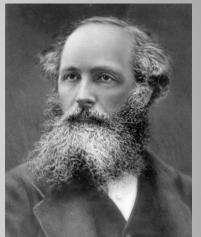
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Ampere's circuital law:

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\oint_{\partial V} \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

$$\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$



$$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A}$$

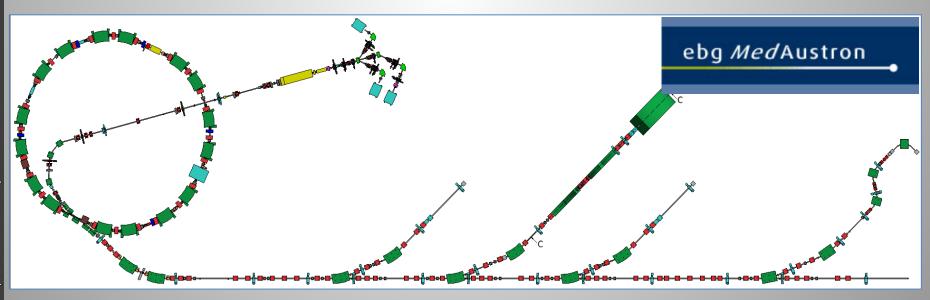
$$\oint_{\partial A} \vec{B} \cdot d\vec{s} = \int_{A} \mu_0 \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_{A} \mu_0 \varepsilon_0 \vec{E} \cdot d\vec{A}$$

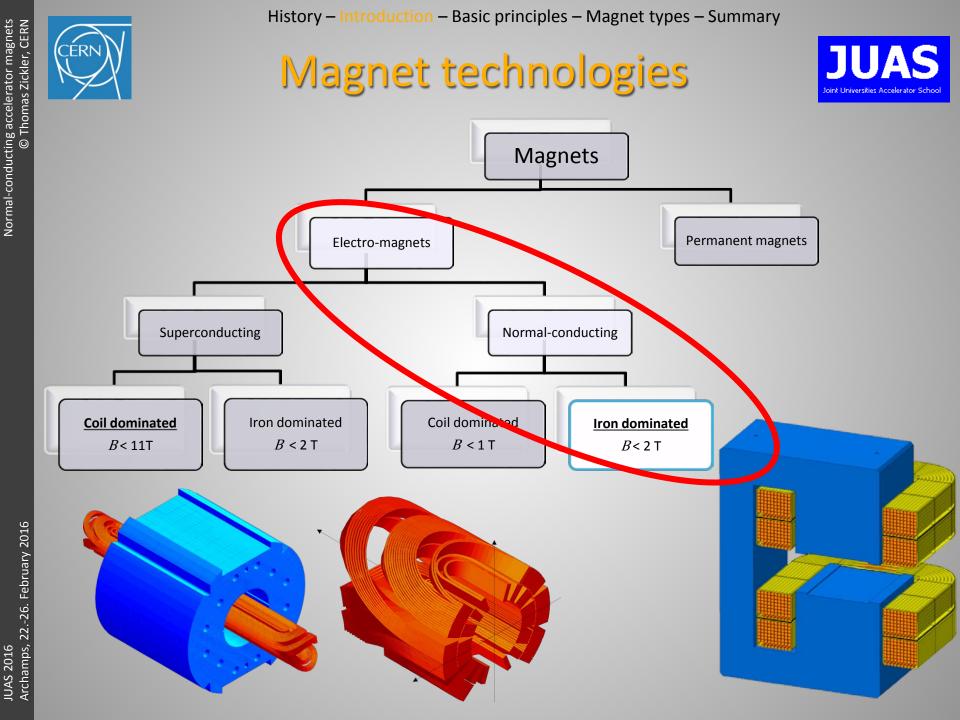
Magnets at CERN

Resistive magnets:

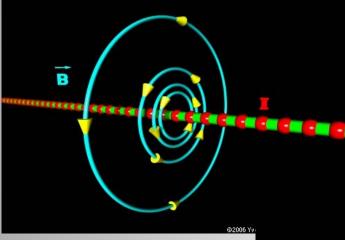
4800 magnets (50 000 tons) are installed in the CERN accelerator complex Superconducting magnets: 10 000 magnets (50 000 tons) mainly in LHC **Permanent magnets:** 150 magnets (4 tons) in Linacs & EA

- Interaction with the beam
 - guide the beam to keep it on the orbit
 - focus and shape the beam
- Lorentz's force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$
 - for relativistic particles this effect is equivalent if $\vec{E} = c\vec{B}$
 - if B = 1 T then $E = 3.10^8$ V/m





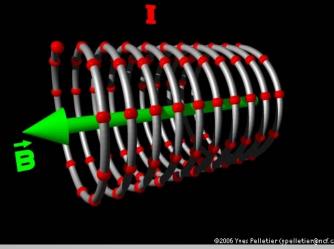
- Permanent magnets provide only constant magnetic fields
- Electro-magnets can provide adjustable magnetic fields



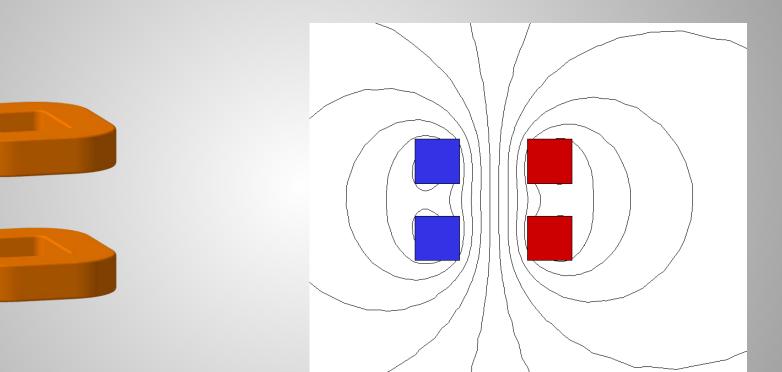
Maxwell & Ampere:

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

"An electrical current is surrounded by a magnetic field"

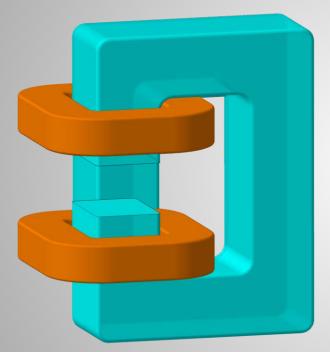


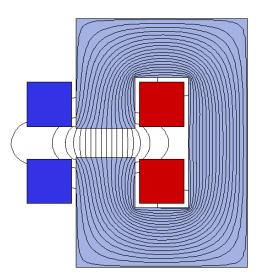
Magnetic circuit



Flux lines represent the magnetic field Coil colors indicate the current direction

Magnetic circuit





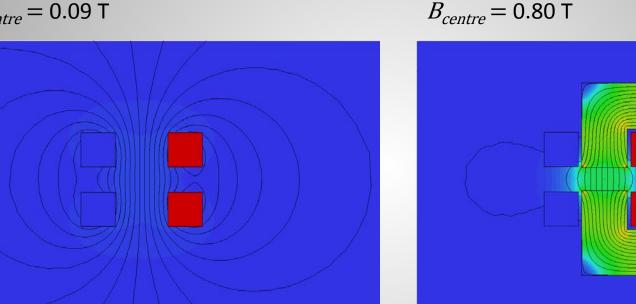
Coils hold the electrical current Iron holds the magnetic flux

I = 32 kA

I = 32 kA $B_{centre} = 0.09 \text{ T}$

Component: BMOD

0.0



The presence of a magnetic circuit can increase the flux density in the magnet aperture by factors

1.0

Note: the asymmetric field distribution is an artifact from the FE-mesh

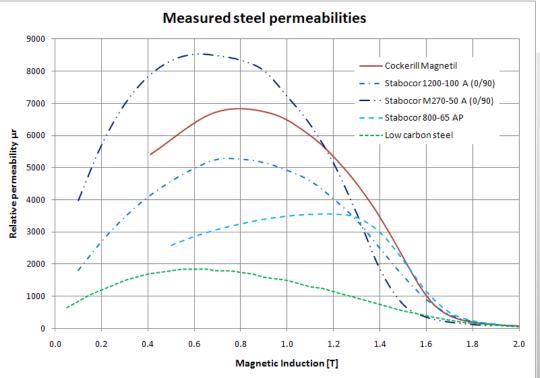
Permeability

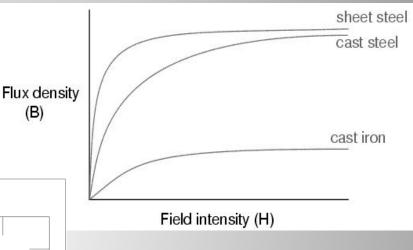
ž

Permeability: correlation between field strength H and flux density B

 $\mu = \mu_0 \mu_r$

 $\overline{B} = \mu \overline{H}$





Ferro-magnetic materials: high permeability ($\mu_r >>1$), but not constant

le

Excitation current in a dipole

Ampere's law $\oint \vec{H} \cdot d\vec{l} = NI$ and $\vec{B} = \mu \vec{H}$

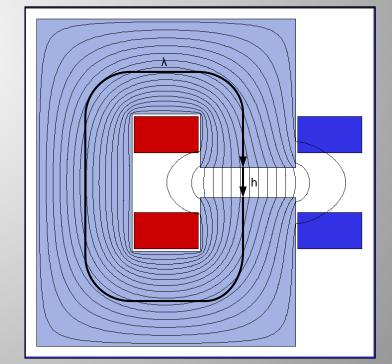
eads to
$$NI = \oint \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_{gap} \frac{\vec{B}}{\mu_{air}} \cdot d\vec{l} + \int_{yoke} \frac{\vec{B}}{\mu_{iron}} \cdot d\vec{l} = \frac{Bh}{\mu_{air}} + \frac{B\lambda}{\mu_{iron}}$$

assuming, that B is constant along the path.

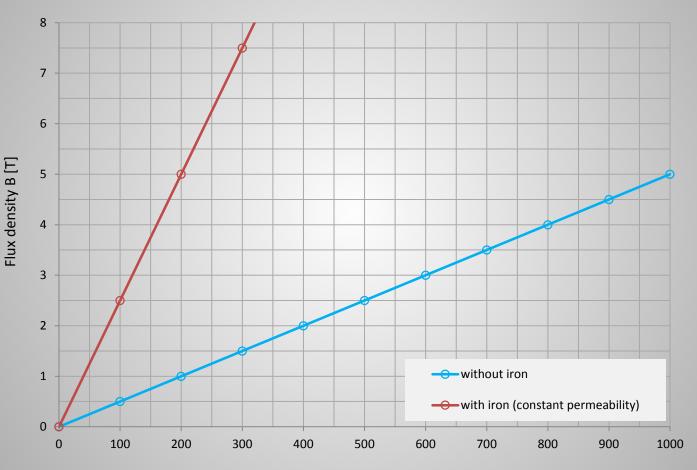
If the iron is not saturated:

$$rac{h}{\mu_{air}} >> rac{\lambda}{\mu_{iron}}$$

then:
$$NI_{(per pole)} \approx \frac{Bh}{2\mu_0}$$



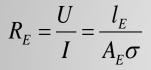
Transfer function



Excitation current I [kA]

Similar to electrical circuits, one can define the 'resistance' of a magnetic circuit, called 'reluctance':

Ohm's law:

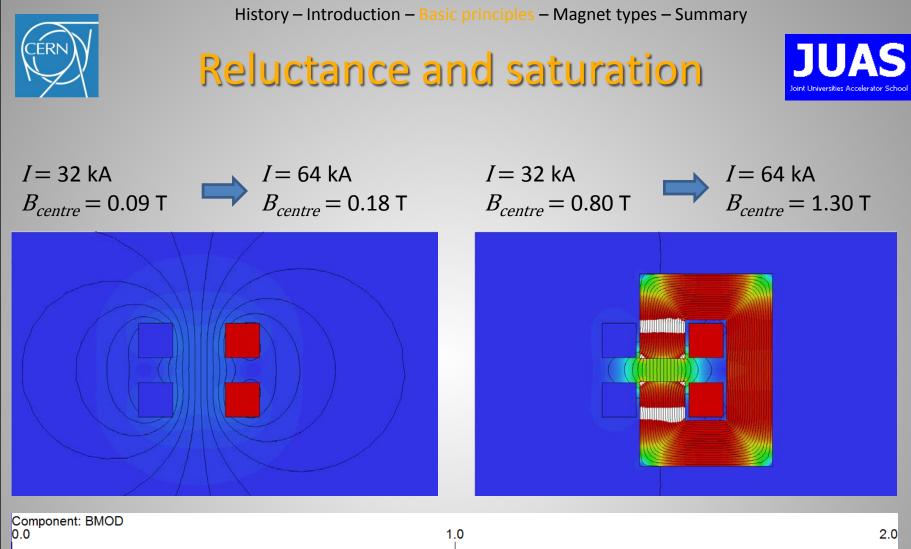


- Voltage drop *U*[V]
- Resistance $R_E[\Omega]$
- Current *I*[A]
- El. Resistivity *σ* [Ωm]
- Conductor length I_E [m]
- Conductor cross section A_E [m²]

Hopkinson's law:

$$R_{M} = \frac{NI}{\Phi} = \frac{l_{M}}{A_{M}\mu_{r}\mu_{0}}$$

- Magneto-motive force NI[A]
- Reluctance R_M [A/Vs]
- Magnetic flux ϕ [Wb]
- Permeability *μ* [Vs/Am]
- Flux path length in iron I_M [m]
- Iron cross section A_M [m²] (perpendicular to flux)



Increase of *B* above 1.5 T in iron requires non-proportional increase of *H* Iron saturation (small μ_{iron}) leads to inefficiencies

0

History – Introduction – Basic principles – Magnet types – Summary

Reluctance and saturation



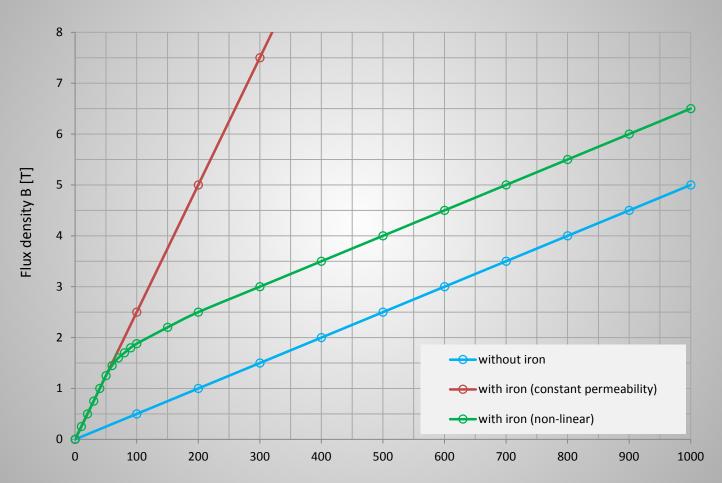
Keep yoke reluctance small by providing sufficient iron cross-section!

Normal-conducting accelerator magnets © Thomas Zickler, CERN

Archamps, 22.-26. February 2016

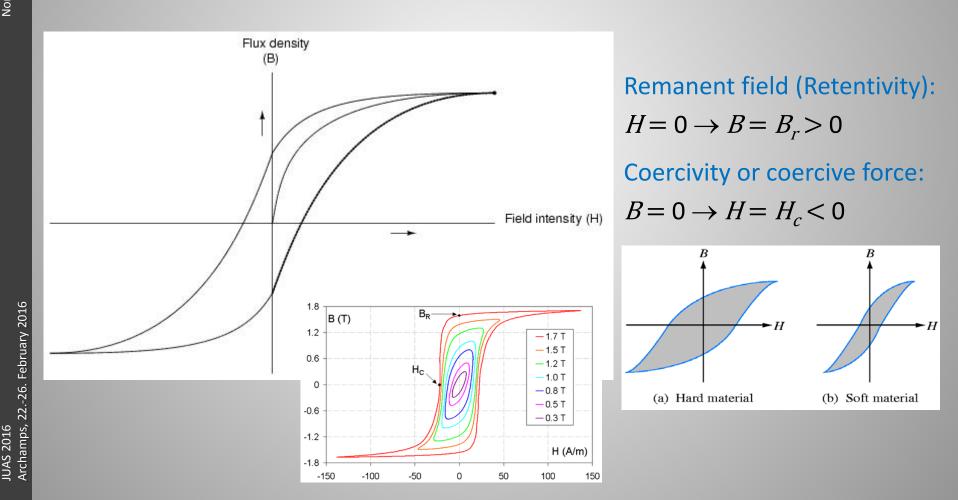
History – Introduction – Basic principles – Magnet types – Summary

Reluctance and saturation



Excitation current I [kA]

Flux density B(H) as a function of the field strength is different, when increasing and decreasing excitation



CERN

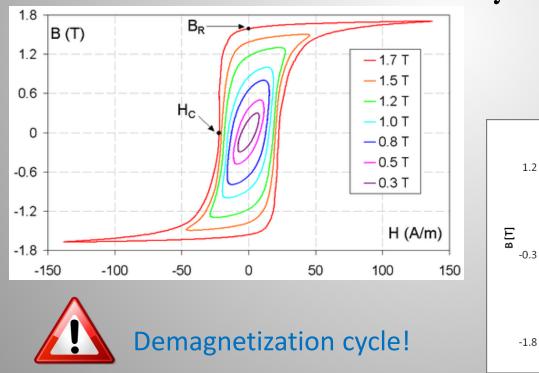
History – Introduction – Basic principles – Magnet types – Summary

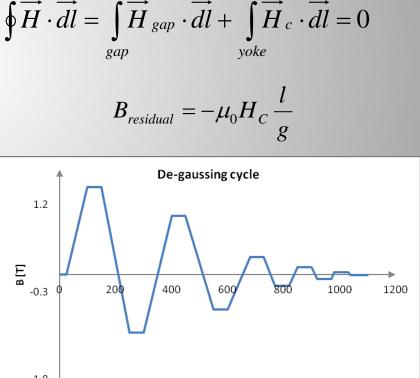
Residual field in a magnet

In a continuous ferro-magnetic core (transformer) the residual field is determined by the remanent field B_r

In a magnet core (gap), the residual field is determined by the coercivity H_c

Assuming the coil current I=0:





time [ms]

Field description

The 2D vector field of B can be expressed as a series of multipole coefficients $B_n(r_0)$, $A_n(r_0)$ with r_0 being the reference radius:

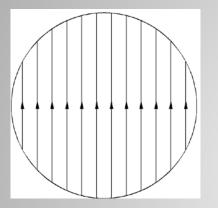
$$B_y(z) + iB_x(z) = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{r_0}\right)^{n-1}$$
 $z = x + iy = re^{i\varphi}$

This 2D decomposition holds only in a region of space:

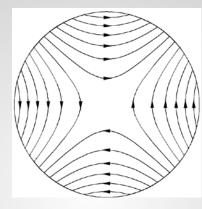
- without currents
- without magnetic materials ($\mu_r = 1$)
- where B_z is constant

Field description

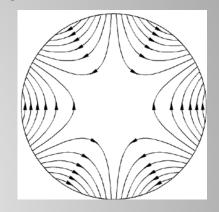
B_1 : normal dipole



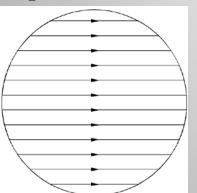
 B_2 : normal quadrupole



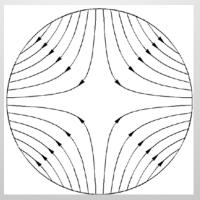
B_3 : normal sextupole



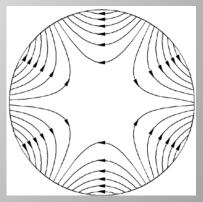
 A_1 : skew dipole



 A_2 : skew quadrupole



 A_3 : skew sextupole

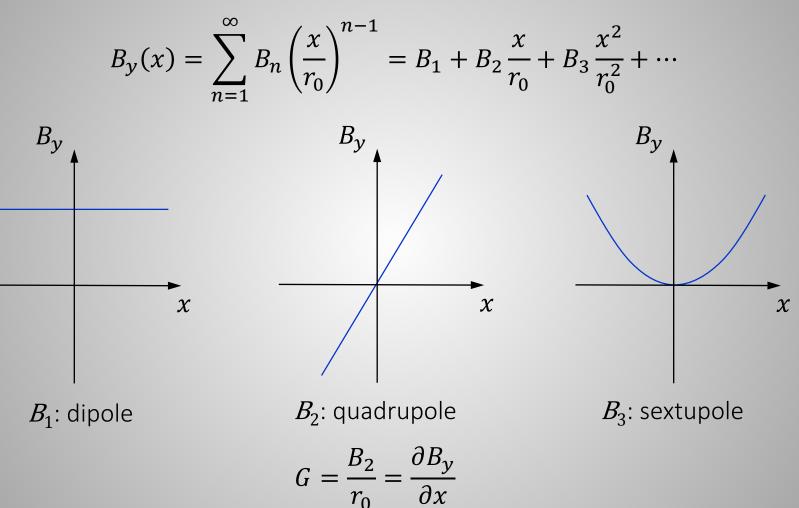


Each multipole term has a corresponding magnet type

Normal-conducting accelerator magnets

History – Introduction – Basic principles – Magnet types – Summary

Field description

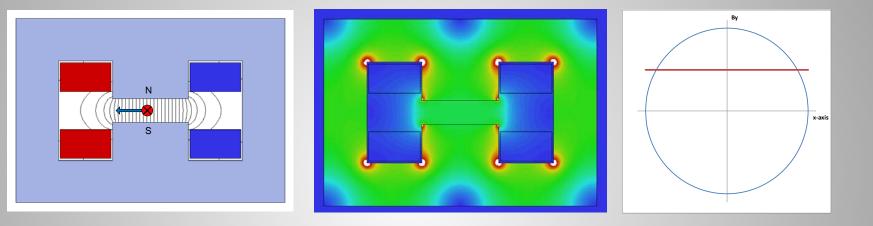


The field profile in the horizontal plane follows a polynomial expansion The ideal poles for each magnet type are lines of constant scalar potential CERN

History – Introduction – Basic principles – Magnet types – Summary

Dipoles

Purpose: bend or steer the particle beam

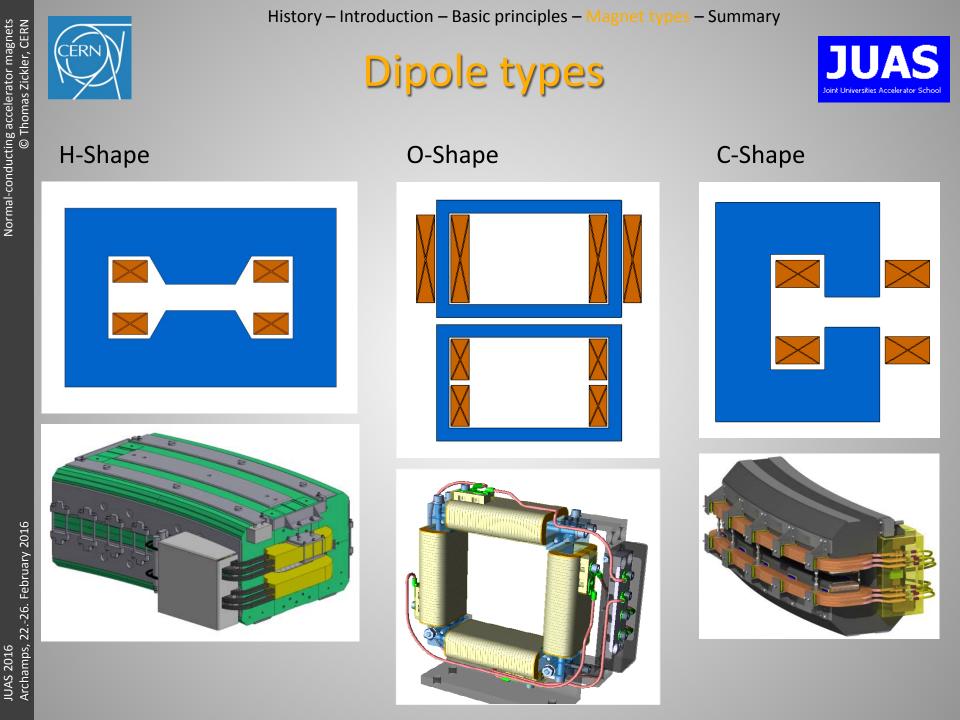


Equation for normal (non-skew) ideal (infinite) poles:

- Polar coordinates: $\rho \sin(\varphi) = \pm h/2$
- Cartesian coordinates: $y = \pm h/2$
- Straight line (*h* = gap height)

Magnetic flux density: $B_x = 0$; $B_y = B_1(r_0) = \text{const.}$

Applications: synchrotrons, transfer lines, spectrometry, beam scanning

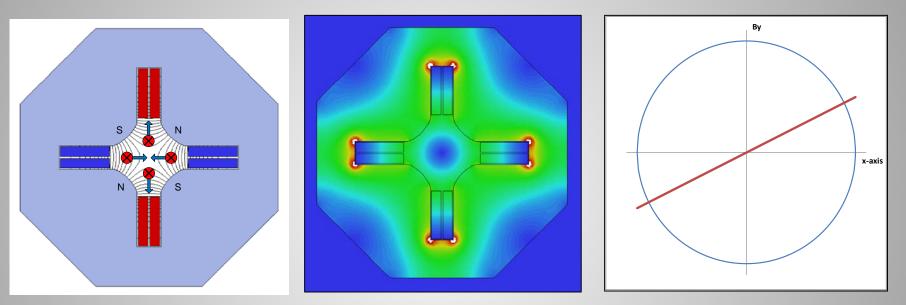


CERN

History – Introduction – Basic principles – Magnet types – Summary

Quadrupoles

Purpose: focusing the beam (horizontally focused beam is vertically defocused)

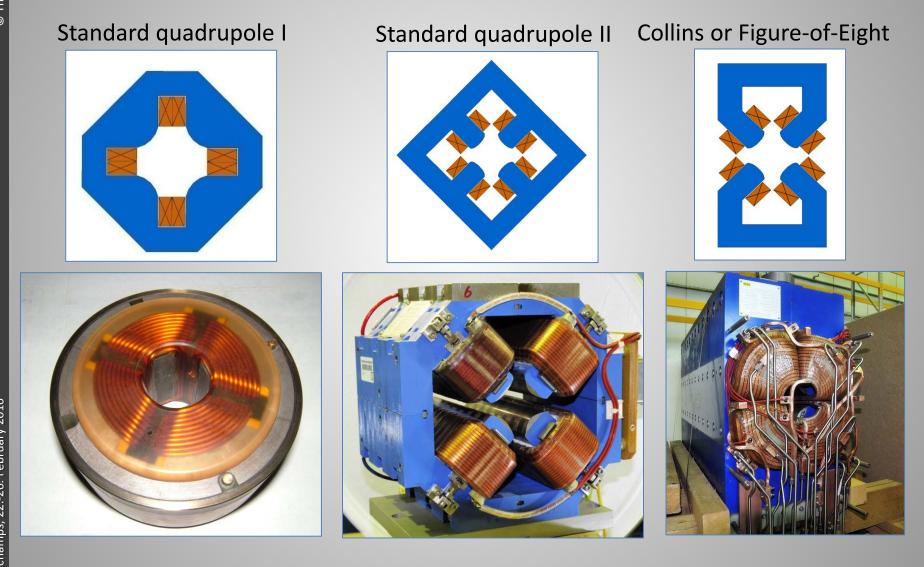


Equation for normal (non-skew) ideal (infinite) poles:

- Polar coordinates: $\rho^2 \sin(2\varphi) = \pm r^2$
- Cartesian coordinates: $2xy = \pm r^2$
- Hyperbola (r = aperture radius)

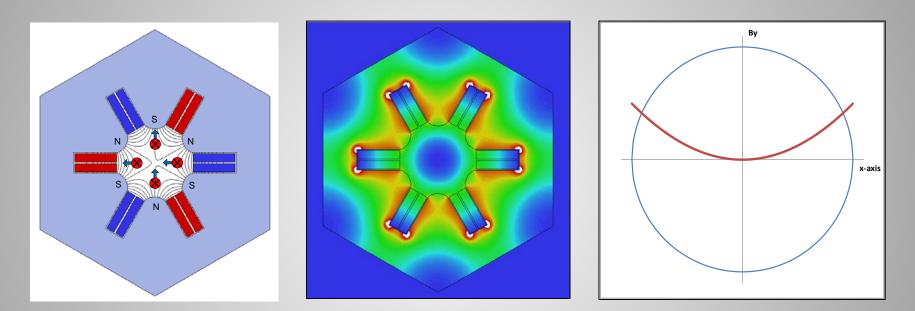
Magnetic flux density: $B_{\chi} = \frac{B_2(r_0)}{r_0} y$; $B_y = \frac{B_2(r_0)}{r_0} x$

Quadrupole types



Sextupoles

Purpose: correct chromatic aberrations of 'off-momentum' particles



Equation for normal (non-skew) ideal (infinite) poles:

- Polar coordinates: $\rho^3 \sin(3\varphi) = \pm r^3$
- Cartesian coordinates: $3x^2y y^3 = \pm r^3$

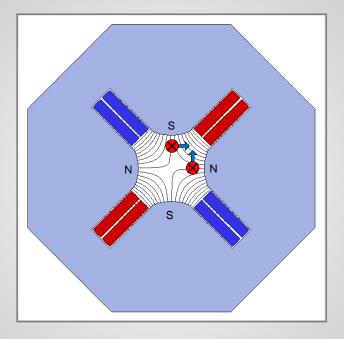
Magnetic flux density: $B_{\chi} = \frac{B_3(r_0)}{r_0^2} xy; B_y = \frac{B_3(r_0)}{r_0^2} (x^2 - y^2)$

CERN

History – Introduction – Basic principles – Magnet types – Summary

Skew quadrupole

Purpose: coupling horizontal and vertical betatron oscillations



Rotation by $\pi/2n$

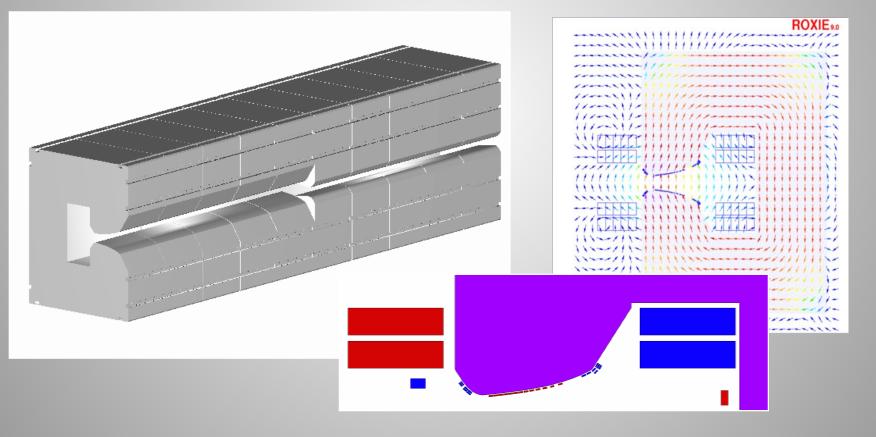
Beam that has horizontal displacement (but no vertical) is deflected vertically Beam that has vertical displacement (but no horizontal) is deflected horizontally

Combined function magnets

Functions generated by pole shape (sum a scalar potentials):

Amplitudes cannot be varied independently

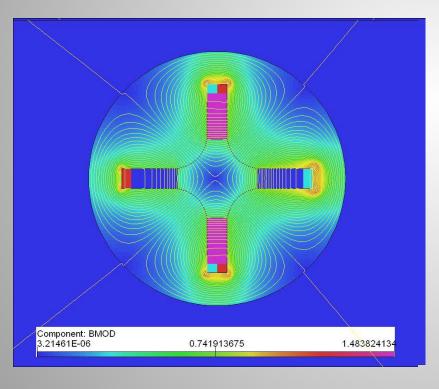
Dipole and quadrupole: PS main magnet (PFW, Fo8...)

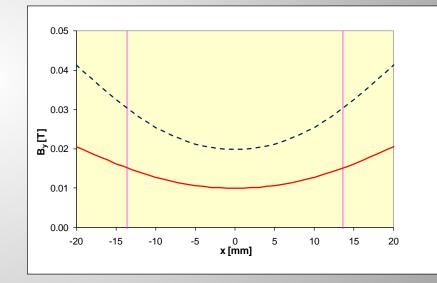


Combined function magnets

Functions generated by individual coils:

Amplitudes can be varied independently

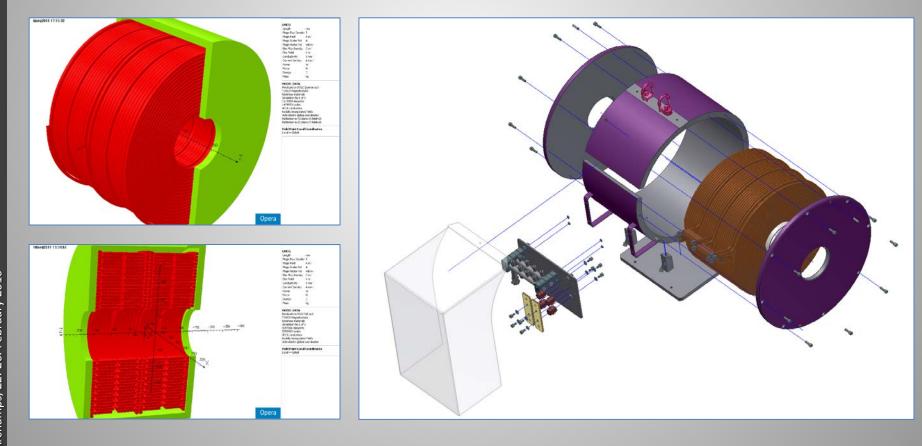




Quadrupole and corrector dipole (strong sextupole component in dipole field)

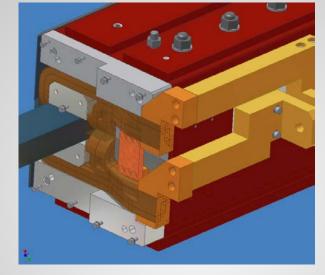
Solenoids

- Weak focusing, non-linear elements
- Main field component in z-direction, focusing by end fields
- Usually only used in experiments or low-energy beam lines

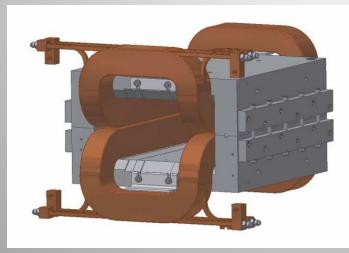


For beam injection and extraction

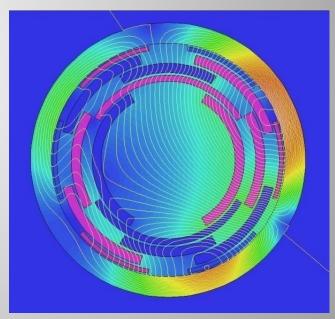
- Septa
- Kicker magnets
- Bumper magnets



Scanning magnets



Coil-dominated magnets



Pole shape	Field distribution	Pole equation	B_{X}, B_{y}
		$y=\pm r$	$B_x = 0$ $B_y = B_1(r_0) = \text{const.}$
		$2xy = \pm r^2$	$B_{x} = \frac{B_{2}(r_{0})}{r_{0}} y$ $B_{y} = \frac{B_{2}(r_{0})}{r_{0}} x$
	N N N N N N N N N N N N N N N N N N N	$3x^2y - y^3 = \pm r^3$	$B_{x} = \frac{B_{3}(r_{0})}{r_{0}^{2}} XY$ $B_{y} = \frac{B_{3}(r_{0})}{r_{0}^{2}} (x^{2} - y^{2})/$
		$4(x^3y - xy^3) = \pm t^4$	$B_{x} = \frac{B_{4}(r_{0})}{6r_{0}^{3}} (3x^{2}y - y^{3})$ $B_{y} = \frac{B_{4}(r_{0})}{6r_{0}^{3}} (x^{3} - 3xy^{2})$

Summary

- Magnets are needed to guide and shape particle beams
- Coils carry the electrical current, the iron yoke carries the magnetic flux
- Steel properties have a significant influence on the magnet performance
- Iron saturation infleunce the efficiency of the magnetic circuit and has to be taken into account in the design
- The 2D magnetic vector field can be expressed as a series of multipole coefficients
- Different magnet types for different functions