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Fundamentals 1 : Maxwell
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CURL / ROTOR

The speed of water S is rotational around an axis determinined by a driving force F, 

its amplitude depends on the distance from the axis and on the driving force . 

Put in mathematics we get:

𝛻𝒙𝑺 = 𝒌𝑭

Remark: a whirlpool is turbulent, the analogy is for didactics purposes only

The curl of a vector field is the closed circulation field through an infinitesimal area 
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DIVERGENCE
The Divergence of a vector is the amount of flux of vector entering or leaving a point.

𝛻 ∙ 𝑭 = lim
𝑣𝑜𝑙→0

𝐹𝑙𝑢𝑥𝑭

𝑣𝑜𝑙

𝛻 ∙ 𝑫 = ρ

This is the 1st Maxwell equation, 

corresponding to the Gauss Law.

𝛻 ∙ 𝑸 ≠ 0
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Basic Principles
A «magnetic field strength» 𝑯 is produced by electrical currents

1820 Hans Christian Ørsted

An electrical current produces a circular magnetic field around the wire

This discovery pushed scientists to understand the mathematics behind this evidence
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𝛻𝒙𝑯 =  𝑱

Generating a magnetic field strength

+
𝜕𝑫

𝜕𝑡
Maxwell

Ampère

1826 André-Marie Ampère     1861 James Clerk Maxwell 
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Let’s use this formula !

𝛻𝒙𝑯 = 𝑱

We consider
𝜕𝑫

𝜕𝑡
= 0

We recall that, thanks to the Kelvin – Stokes theorem the surface integral of the 

curl of a vector field over a surface 𝑺 is equal to the line integral of the vector

field along its boundary 𝜕𝑺 : 

 
𝑆

𝛻𝒙𝑯 ∙ 𝑑𝑺 =  
𝜕𝑆

𝑯 ∙ 𝑑 𝒍 =  
𝜕𝑆

 𝑱 ∙ 𝑑 𝒍 = 𝐈
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𝜕𝑆

𝑯 ∙ 𝑑 𝒍 = 𝐈

Let’s use this formula ! cont

r

We consider the boundary along

the circumference at radius «r». 

Keeping the same radius, due to 

symmetry, H remains constant.

H∙ 𝟐 ∙ 𝝅 ∙ 𝒓 = 𝐈

H=
𝑰

𝟐∙𝝅∙𝒓
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The Magnetic Field Induction

What produces the «effect» is the «magnetic field induction» 𝑩

𝑭 = 𝑞𝒗𝑥𝑩
The «magnetic field induction» is created by the «magnetic field strength»

In certain materials (ferromagnetic) we just need a small strength to

produce a large induction, in most materials we need a large strength to

produce a large induction. We define the following constitutive equation:

𝑩 = 𝜇0𝜇𝑟𝑯
𝜇0 = 4𝜋 ∙ 10−7 𝐻/𝑚
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The Fantastic Four

𝛻 ∙ 𝑫 = ρ

𝛻𝒙𝑯 =  𝑱 +
𝜕𝑫

𝜕𝑡

Gauss law for electricity

𝛻 ∙ 𝑩 = 0 Gauss law for magnetism

Ampère law with correction

𝛻𝒙𝑬 = −
𝜕𝑩

𝜕𝑡
Faraday-Lenz law of induction
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Continuity conditions

𝛻 ∙ 𝑩 = 0 𝛻𝒙𝑯 = 0

n

The flux which enters shall be

equal to the flux which exits

𝐵⊥ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐻∥ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

The integral of the field

strength
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Fundamentals 2 : Field Harmonics
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Decomposition of magnetic field

j

r

In cartesian coordinates

𝑉𝑥 = 0 ; 𝑉𝑦= −𝑘

 𝑉 = 𝑉𝑦 + 𝑖𝑉𝑥 = −𝑘 + 𝑖0

In polar coordinates

𝑉𝜑 = −𝑘𝑐𝑜𝑠𝜑; 𝑉𝑟 = −𝑘𝑠𝑖𝑛𝜑

In case of a combination of uniform vertical k and uniform horizontal field h we have:

 𝑉 = 𝑉𝑦 + 𝑖𝑉𝑥 = 𝑘 + 𝑖0 + 0 + 𝑖ℎ = 𝑘 + 𝑖ℎ

The coefficients caracterizing the vertical field (producing horizontal beam deflection) 

are called «normal», the ones caracterizing the horizontal field are called «skew».

𝑉𝜑 = −𝑘𝑐𝑜𝑠𝜑 + ℎ sin𝜑 ; 𝑉𝑟 = −𝑘𝑠𝑖𝑛𝜑 + ℎ𝑐𝑜𝑠𝜑
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To go ahead we need …The Potential
Since the divergence of a curl is zero, we can define a vector potential 𝑨 such that:

𝛻 ∙ 𝑩 = 𝛻 ∙ (𝛻𝒙𝑨) =0

With then:

𝑩 = 𝛻𝒙𝑨

In air, as 𝑩 = 𝜇0𝑯:

𝜇0 𝑱 = 𝛻𝒙𝑩 = 𝛻𝒙 𝛻𝒙𝑨 = −𝛻2𝑨

𝛻2𝑨 = 0

In air, in a volume with no currents:
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Why we need the (vector) potential
As 𝑩 = 𝛻𝑥𝑨, in a 2D case (plane geometry) the only component of 𝑨 is 𝐴𝑧

For a further insight I recommend checking the Feynman Lectures on Physics, 

now «free to read online» at http://www.feynmanlectures.caltech.edu

rr0

j

𝛻2𝐴𝑧 = 0 in polar coordinates becomes:

𝑟2
𝜕2𝐴𝑧
𝜕𝑟2

+ 𝑟
𝜕𝐴𝑧
𝜕𝑟

+
𝜕2𝐴𝑧
𝜕𝜑2 = 0

The solution of this equation is:

𝐴𝑧 𝑟, 𝜑 =  

𝑛=1

∞

𝑟𝑛(𝐶𝑛 sin 𝑛𝜑 + 𝐷𝑛 cos 𝑛𝜑)

… and the field components are :

𝐵𝑟 𝑟, 𝜑 =
1

𝑟

𝜕𝐴𝑧
𝜕𝜑

=  

𝑛=1

∞

𝑛𝑟𝑛−1(𝐶𝑛 cos 𝑛𝜑 − 𝐷𝑛 sin 𝑛𝜑)

𝐵𝜑 𝑟, 𝜑 = −
𝜕𝐴𝑧
𝜕𝑟

= − 

𝑛=1

∞

𝑛𝑟𝑛−1(𝐶𝑛 sin 𝑛𝜑 + 𝐷𝑛 cos 𝑛𝜑)
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Field Harmonics
𝑛 = 1: 𝐷𝑖𝑝𝑜𝑙𝑒

𝑛 = 2: Quadrupole

𝑛 = 3: 𝑆𝑒𝑥𝑡𝑢𝑝𝑜𝑙𝑒

𝐵𝑟 𝑟, 𝜑 = 𝐶1 cos𝜑 − 𝐷1 sin𝜑
= 𝐴1cos𝜑 − 𝐵1 sin𝜑

𝐵𝜑 𝑟, 𝜑 = −(𝐶1sin 𝑛𝜑 + 𝐷1 cos 𝑛𝜑)

= −(𝐴1sin 𝑛𝜑 + 𝐵1 cos 𝑛𝜑)

𝐵𝑟 𝑟, 𝜑 = −𝐵1 sin 𝜑

𝐵𝜑 𝑟, 𝜑 = −𝐵1 cos 𝑛𝜑

«normal» dipole component

«normal» quadrupole component normalized at 𝑟0

«normal» sextupole component normalized at 𝑟0

𝐵𝑟 𝑟, 𝜑 = 2𝑟1 𝐶2 cos 2𝜑 − 𝐷2 sin 2𝜑

=  
𝑟

𝑟0

1
(𝐴2 cos 2𝜑 − 𝐵2 sin 2𝜑)

𝐵𝜑 𝑟, 𝜑 = −2𝑟1(𝐶2 sin 2𝜑 + 𝐷2 cos 2𝜑)

= −
𝑟

𝑟0

1
(𝐴2 sin 2𝜑 + 𝐵2 𝑐𝑜𝑠 2𝜑)

𝐵𝑟 𝑟, 𝜑 = 3𝑟2 𝐶3 cos 3𝜑 − 𝐷3 sin 3𝜑

= 
𝑟

𝑟0

2
(𝐴3 cos 3𝜑 − 𝐵3 sin 3𝜑)

𝐵𝜑 𝑟, 𝜑 = −3𝑟2 𝐶3 sin 3𝜑 + 𝐷3 cos 3𝜑

=−
𝑟

𝑟0

2
(𝐴3 sin 3𝜑 + 𝐵3 cos3𝜑)

𝐵𝑚𝑜𝑑 𝑟, 𝜑 = 𝐵1

W𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝐵2@𝑟0 = 𝑟02𝐷2

𝐵𝑟 𝑟, 𝜑 = −
𝑟

𝑟0
𝐵2 sin 2𝜑

𝐵𝜑 𝑟, 𝜑 = −
𝑟

𝑟0
𝐵2 cos 2𝜑

W𝑒 𝑎𝑙𝑠𝑜 𝑑𝑒𝑓𝑖𝑛𝑒
∗
𝐺 =

𝐵

𝑟
=

𝐵2
𝑟0

∗
for practical reasons I prefer a definition with no sign to avoid misunderstanding 

W𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝐵3@𝑟0 = 𝑟0
23𝐷3

𝐵𝑟 𝑟, 𝜑 = −
𝑟2

𝑟0
2 𝐵3 sin 2𝜑

W𝑒 𝑎𝑙𝑠𝑜 𝑑𝑒𝑓𝑖𝑛𝑒
∗
𝑆 =

𝐵

𝑟2
=

𝐵3

𝑟0
2

𝐵𝜑 𝑟, 𝜑 = −
𝑟2

𝑟0
2 𝐵3 cos 2𝜑
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Warning on the Sextupole Component

W𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝐵3@𝑟0 = 𝑟0
23𝐷3

𝐵𝑟 𝑟, 𝜑 = −
𝑟2

𝑟0
2 𝐵3 sin 2𝜑

W𝑒 𝑎𝑙𝑠𝑜 𝑑𝑒𝑓𝑖𝑛𝑒 𝑆 =
𝐵

𝑟2
=

𝐵3

𝑟0
2

𝐵𝜑 𝑟, 𝜑 = −
𝑟2

𝑟0
2 𝐵3 cos 2𝜑

When you reconstruct the field amplitude as a function of the radius you obtain: 

For a quadrupole, using the gradient «G»: 𝐵 = 𝐺𝑟

For a sextupole, using «S»                       : 𝐵 = 𝑆𝑟2

However, if you express the magnetic field by a polynomial expansion:

For a quadrupole : 𝐵 =
𝜕𝐵

𝜕𝑟
𝑟 = 𝐺𝑟 , so there is no uncertitude of what is G 

For a sextupole : 𝐵 =
𝜕2𝐵

𝜕𝑟2
𝑟2 = 2𝑆𝑟2 ≠ 𝑆𝑟2

Above the quadrupole, always cross check the definition: best is to specify the 

the field amplitude at a refence radius (which means you specify 𝐵3𝑟0)
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Relative Field Harmonics
When you have a real magnet of a specific type, you wish it produces that given type of

harmonic only, but you will get also other harmonics, more or less large.

We define «relative field harmonic» the ratio between that field harmonic and the reference

field harmonic expressed in units of 10−4 of the main harmonic, at a reference radius 𝑟0.

𝑏𝑖 =
𝐵𝑖
𝐵𝑟𝑒𝑓

104

Exercice 1: on a «normal» quadrupole with gradient 𝐺 = 50 𝑇/𝑚 , we measure at a radius

of 𝑟0 = 10 𝑚𝑚 a «skew» dipole field of 10 𝐺𝑎𝑢𝑠𝑠 and a «normal» sextupole field of 25 𝐺𝑎𝑢𝑠𝑠
Compute the relevant field harmonics in units of 10−4

Solution :

𝐵2 = 𝐺𝑟0 = 0.5 𝑇 = 5000 𝐺𝑎𝑢𝑠𝑠

𝑎1 =
𝐴1
𝐵2

104 = 20 𝑢𝑛𝑖𝑡𝑠

𝑏3 =
𝐵3
𝐵2

104 = 50 𝑢𝑛𝑖𝑡𝑠
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Scaling of Relative Field Harmonics
𝐵𝑟 𝑟, 𝜑 =

1

𝑟

𝜕𝐴𝑧
𝜕𝜑

=  

𝑛=1

∞

𝑛𝑟𝑛−1(𝐶𝑛 cos 𝑛𝜑 − 𝐷𝑛 sin 𝑛𝜑) 𝐵𝜑 𝑟, 𝜑 = −
𝜕𝐴𝑧
𝜕𝑟

= − 

𝑛=1

∞

𝑛𝑟𝑛−1(𝐶𝑛 sin 𝑛𝜑 + 𝐷𝑛 cos 𝑛𝜑)

Let’s consider the dependency vs radius of a given field harmonic amplitude, does not matter normal or skew

𝐻𝑛 = 𝑘𝑟𝑛−1

The field harmonic relative to a «reference order m» scales as:

ℎ𝑛(𝑟) = ℎ𝑛(𝑟0)

𝑟
𝑟0

𝑛−1

𝑟
𝑟0

𝑚−1 = ℎ𝑛(𝑟0)
𝑟

𝑟0

𝑛−𝑚

Exercice 2: scale the field harmonics of Exercice 1 to a radius of 𝑟 = 20 𝑚𝑚

Solution :

𝑎1 20 𝑚𝑚 = 20 𝑢𝑛𝑖𝑡𝑠 𝑥 (
20

10
)1−2= 10 𝑢𝑛𝑖𝑡𝑠

𝑏3 20 𝑚𝑚 = 50 𝑢𝑛𝑖𝑡𝑠 𝑥 (
20

10
)3−2= 100 𝑢𝑛𝑖𝑡𝑠
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