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The speed of water S is rotational around an axis determinined by a driving force F,

its amplitude depends on the distance from the axis and on the driving force .
Put in mathematics we get:

VxS = kF

The curl of a vector field is the closed circulation field through an infinitesimal area

Remark: a whirlpool is turbulent, the analogy is for didactics purposes only
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DIVERGENCE

The Divergence of a vector is the amount of flux of vector entering or leaving a point.

- FluxF
V.- F= lim ——
vol-0 7vol

fizld lines

/s

The eleclric field froman The elecric figld from an
igolated positive chargs igelated negative charge

—

V'6¢0 V-D=p

This is the 1st Maxwell equation,
corresponding to the Gauss Law.
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Basic Principles

A «magnetic field strength» His produced by electrical currents

1820 Hans Christian drsted

DIRECTION
OF FIELD

An electrical current produces a circular magnetic field around the wire

This discovery pushed scientists to understand the mathematics behind this evidence
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Generating a magnetic field strength

axwe
1826 André-Marie Ampére 1861 James Clerk Maxwell
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Let’s use this formula !

oD

ot = 0

We consider

—

Vxﬁzj

We recall that, thanks to the Kelvin — Stokes theorem the surface integral of the
curl of a vector field over a surface § is equal to the line integral of the vector
field along its boundary s

jf Vxﬁ-d§=j£ ﬁ-di=f J-dl=1
S 0S 0S
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Let’s use this formula! cont

: —> -
L DIRECTION 9S
PORTAS OF FIELD

We consider the boundary along
the circumference at radius «r».
Keeping the same radius, due to
symmetry, H remains constant.

H-2-w-r=1

ELECTRON

I

2:1TTr

H=
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The Magnetic Field Induction

What produces the «effect» is the «magnetic field induction» B
F = gUxB

The «magnetic field induction» is created by the «magnetic field strength»
In certain materials (ferromagnetic) we just need a small strength to
produce a large induction, in most materials we need a large strength to
produce a large induction. We define the following constitutive equation:

—> —>
B = pou-H
o =4m-10"7 H/m
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The Fantastic Four

é

. D — p Gauss law for electricity
%
B

° - O Gauss law for magnetism
é
— 0B
VxE — Faraday-Lenz law of induction
dt
é

Ampere law with correction
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Continuity conditions

—

V-B=20 VxH = 0

!n

: . S—

— \ ] \
The flux which enters shall be The integral of the field
equal to the flux which exits strength
B, = constant H, = constant
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Fundamentals 2 : Field Harmonics

D.Tommasini Introduction to Magnets JUAS February 224, 2016



Decomposition of magnetic field
- \\

1 11 e In cartesian coordinates

Ve =0;V,=—k
V=V, +ilV,=—-k+i0
In polar coordinates

Vo = —kcosg; V. = —ksing

In case of a combination of uniform vertical k and uniform horizontal field h we have:
V="V,+iV=(k+i0) + (0+ih) =k + ih
Vo = —kcosp + hsing; V. = —ksing + hcosg

The coefficients caracterizing the vertical field (producing horizontal beam deflection)
are called «normal», the ones caracterizing the horizontal field are called «skew».
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To go ahead we need ... The Potential

Since the divergence of a curl is zero, we can define a vector potential A such that;

V.-B=V-(VxA) =0

With then:

B = sz

In air, as B = #oﬁi

uoJ = VxB = Vx(VxA) = —V?A

In air, in a volume with no currents:
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Why we need the (vector) potential

As B = Vx4, in a 2D case (plane geometry) the only component of Ais A,

V24, = 0 in polar coordinates becomes:

P r , aZ AZ 0 AZ aZ AZ B

¢ - " or +r6r+6<p2_

The solution of this equation is:

(0]

A,(r,p) = Z r"™*(C, sinng + D, cosng)

n=1

... and the field components are :

10A
B.(r,p) = - acpz = 2 nr*~1(C, cosng — D, sinng)
n=1
dA
B,(r,¢) = — arZ = — 2 nr™~1(C, sinng + D, cosng)
n=1

& For a further insight | recommend checking the Feynman Lectures on Physics,
Lﬁz_. "= now «free to read online» at http://www.feynmanlectures.caltech.edu
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Field Harmonics

«normal» dipole component

B,.(r,9¢) = Cicosq@ — D;sing
= Aqcos¢@ — B;sing

B,(r,¢) = —(Cysinng + Dy cos ng)
= —(A;sinng + B, cosng)

n = 2: Quadrupole

B.(r,¢) = 2r(C,cos2¢ — D, sin2¢)
1
= (%) (A, cos2¢p — B, sin 2¢)

B, (r,9) = —=2r*(C, sin 2¢ + D, cos 2¢)
1
= — (:—0) (A, sin2¢ + B, cos 2¢)

n = 3: Sextupole

B,.(r,9) = 3r?(C3cos3¢ — D3 sin3¢)
2
= (TL) (A3 cos 3¢ — B3 sin3¢)
0
B, (r,9) = =3r*(C;3sin 3¢ + D3 cos 3¢)
2
=— (TL) (A3sin3¢ + B3 cos3¢)
0
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B.(r,¢¢) = —B; sin ¢
B,(r,¢) = —B; cosng

Bmod(r: (P) =B,

«normal» quadrupole component normalized at r,

Introduction to Magnets

We define Bz@ro = r02D2
r

B.(r,p) = —— B, sin 2¢
To

r
B,(r, @) = —EBZ cos2¢
B |B,|

We also define” G = — =
T 7o

«normal» sextupole component normalized at

We define B;@ry = r23D;
2
r
B.(r,¢) = ——Bssin2¢
To

r2
B,(r,¢) = —r—zB3 cos2¢

0
B _|Bsl

We also define S = — =
e also define = 2

" for practical reasons | prefer a definition with no sign to avoid misunderstanding
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Warning on the Sextupole Component

We define Bg@ro = 123D,

i 5%\% i
-\u_“'"’-)’ff;!}ﬁ%?“"‘“.,, B (7‘ (,0) = - B3 sin2¢
I N T TRl T
NN/ ;
N\ttt 7 r2
;&r; -‘l:\\‘{‘ @ ,rOZ
LA Ay V12 ITINAN
S e ateo define s < VB 1Bl
“‘i\‘ill”;f’ e alsodefine S = 22

When you reconstruct the field amplitude as a function of the radius you obtain:
For a quadrupole, using the gradient «G»: |B| =

For a sextupole, using «S» . |B| =

However, if you express the magnetic field by a polynomial expansion:

For a quadrupole : |B| = —r = Gr , So there is no uncertitude of what is G

aB

For a sextupole :|B| =—71?% = 25r% # Sr?

Above the quadrupole, always cross check the definition: best is to specify the
the field amplitude at a refence radius (which means you specify Bs,, )
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Relative Field Harmonics

When you have a real magnet of a specific type, you wish it produces that given type of
harmonic only, but you will get also other harmonics, more or less large.

We define «relative field harmonic» the ratio between that field harmonic and the reference
field harmonic expressed in units of 10~* of the main harmonic, at a reference radius 7.

B:
b; = —10*
Bref

Exercice 1: on a «normal» quadrupole with gradient ¢ = 50 T/m , we measure at a radius
of ry = 10 mm a «skew» dipole field of 10 Gauss and a «normal» sextupole field of 25 Gauss
Compute the relevant field harmonics in units of 107*

Solution :

B, = Gry =0.5T = 5000 Gauss

A
a, = —10% = 20 units
B

B
b = —10% = 50 units
B,
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Scaling of Relative Field Harmonics

194, o _ 04, o
B.(r,p) = r 90 = Z nr'*=*(C, cosng — D, sinng) B,(r,¢) = — 5 =~ Z nr’*~*(C, sinng + D, cos ny)

n=1 n=1

Let’s consider the dependency vs radius of a given field harmonic amplitude, does not matter normal or skew
H, = kr*1

The field harmonic relative to a «reference order m» scales as:

L n—1 i
hn(r) = h n(ro)( ) n(r0)< >

&

Exercice 2: scale the field harmonics of Exercice 1 to a radius of r = 20 mm

Solution :

20
a,(20 mm) = 20 units x (ﬁ)1_2= 10 units

b3(20 mm) = 50 units x (—)3 2= 100 units
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